
THE visual systems of humans and other
animals perform powerful computations that
exploit information in retinal images that is
useful for critical sensory-perceptual tasks.
The information in retinal images is deter-
mined by the statistical structure of natural
scenes, projection geometry, and the proper-
ties of the optical system and the retina itself.
Task performance is determined by the quality
of the information available in retinal images
and by how well that information is exploited.
To characterize the theoretical limits of 
performance in a specific natural task, all
these factors must be accounted for. 
Nearly all sighted mammals have lens-

based imaging systems (eyes) that focus and
defocus light on the retinal photoreceptors.
The estimation of focus error (i.e., defocus) 
is one particularly important natural task.
Focus information is useful for a wide range

of tasks, including depth estimation, eye-
growth regulation, and accommodation 
control.6,8,15 Typical lenses focus light from
only one distance at a time, but natural scenes 
contain objects and surfaces at many 
distances.  Most regions in images of 
depth-varying scenes are therefore out-of-
focus and blurry under normal observing 
situations.  The amount of image blur caused
by a given focus error depends on the lens
optics and the size and shape of the lens 
aperture.
For tasks that depend on high-resolution

images, image blur can be a significant
impediment.  To sharply image an out-of-
focus target, the lens must be refocused so
that the focus distance equals the target 
distance.  It has been estimated that humans
refocus their eyes more than 100,000 times
per day.10,12 Perhaps because of all this 
practice, human accommodation (biological
autofocusing) is fast, accurate, and precise.
Two- to three-hundred milliseconds after 
presentation of a defocused target, the human
lens refocuses ballistically with (approxi-
mately) the correct magnitude in the correct
direction nearly 100% of the time.7

Consumers are often frustrated by the slow
speed and inaccuracy of image-based smart-
phone autofocus routines.  Achieving the
speed of human accommodation would be a
great improvement.  The most popular image-
based autofocus routine is contrast detection.
This is a “guess-and-check” procedure that
employs an iterative search for maximum 
contrast.  The procedure is non-optimal for at
least two reasons: (1) Contrast-detection auto-
focus does not provide information about
focus error sign; when simple detection algo-
rithms start the search for best focus, the
direction of the initial response (closer vs. 
farther) is random.  (2) Contrast-detection 
autofocus does not provide estimates of focus
error magnitude; in the search for best focus,
the focus adjustment often crosses the point of
best focus and then must turn around and
come back. 
Here, we describe recent advances in our

ability to estimate focus error from small
patches of individual images.  We show that
precise unbiased estimates of focus error 
can be obtained for both the human visual 
system and for a popular smartphone camera.  
Chromatic aberrations that are introduced by
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the lenses of these vision systems can be used
to resolve the sign ambiguity.  Thus, the
approach has the potential to significantly
improve image-based autofocus routines in
smartphone cameras, medical devices for
assistive vision, and other electronic imaging
devices.

Background
Focus-error estimation suffers from an
inverse-optics problem; from image informa-
tion alone, it is impossible to determine with
certainty whether a given image pattern is due
to focus error (blur) or some feature of the
scene (e.g., shadows).  Focus-error estimation
is also said to suffer from a sign ambiguity;
under certain conditions, focus errors of the
same magnitude but different signs produce
identical images.  These issues may make it
seem that accurate focus-error estimation
from individual images is impossible.  
However, in many vision systems, the optical
properties of the lens and the sensing proper-
ties of the photosensor array, together with 
the statistical properties of natural images,
make a solution possible.  We now discuss
these factors. 

Statistical Properties of Natural Images
Natural images are remarkably varied.  In 
natural viewing conditions, the eye images a
staggering variety of object colors, shapes,
sizes, and textures [Fig 1(a)].  In spite of this

variation, there is one property of natural
images that is relatively stable: the shape of
the amplitude spectrum.  Most well-focused
natural-image patches have amplitude spectra
with a 1/f fall-off; i.e., in a typical patch, there
is 10× less contrast at 10 cpd (cycles per
degree) and 30× less at 30 cpd than at 1 cpd.
Of course, the shape of the amplitude spec-
trum varies somewhat with patch content, and
variability increases as patch size decreases.
Nevertheless, the shape of the natural ampli-
tude spectrum is stable enough.  To obtain an
empirical estimate of the statistical structure
of natural images, we collected a large data-
base of well-focused images of natural
scenes.2.

Optical Properties of Lenses
Focus-error changes the shape of the ampli-
tude spectrum.  Small focus errors attenuate
the spectrum (i.e., power) at high frequencies;
intermediate focus errors attenuate the spec-
trum at intermediate frequencies, and so on
[Fig. 1(b)].  These shape changes provide
information about focus-error magnitude [Fig.
1(c)].  However, under certain conditions,
lenses provide no information about the sign
of the error (focus too close vs. too far).  For
example, in an ideal optical system with
monochromatic light, image quality is
degraded by focus error (i.e., defocus) and dif-
fraction alone.  Focus errors of the same mag-
nitude but opposite signs thus yield identical

point-spread functions (PSFs) and correspon-
ding modulation-transfer functions [MTFs;
Fig. 1(b)].  The effect of this type of focus
error on the amplitude spectrum of a represen-
tative natural image patch is shown in Fig.
1(c).
In real optical systems with broadband

light, image quality is degraded not just by
defocus and diffraction, but also by chromatic
and monochromatic aberrations other than
defocus (e.g., astigmatism).  Although these
aberrations reduce best-possible image 
quality, they introduce information into retinal
images than can be used to precisely estimate
the magnitude and sign of focus error.2,3,17
Here, we focus on the usefulness of chromatic
aberration in the human visual system14 and
smartphone cameras. 

Sensing Properties of Photosensors
For chromatic aberrations to be useful, the
vision system must be able to sense them.
The human visual system and most cameras
have arrays of sensors that are differentially
sensitive to long-, medium-, and short-wave-
length light.  In human vision, the sensitivities
of the long- (L), medium- (M), and short- (S) 
wavelength cones peak at 570, 530, and 445
nm, respectively13 In the human eye, the
change in chromatic defocus between the peak
sensitivities of the L and S cones is approxi-
mately 1 diopter (D).1 In many cameras, the
sensitivity of the red, green, and blue sensors
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Fig. 1:  Signals for focus-error estimation: (a) Natural image variation is substantial. (b) Monochromatic modulation transfer function (MTF) 
in a diffraction limited lens for a range of focus errors (colors).  The MTF is the modulus of the Fourier transform of the point-spread function
(PSF).  (c) The amplitude spectrum of a particular local patch (1°, inset) changes shape systematically with focus error (colors matched to b).  
(d) Spatial-frequency filters (Gaussian bumps labeled 1–4) tiling the critical band of the spatial-frequency domain.  (e) Each filter responds
according to power in the spectrum in its passband.  The responses provide a digital approximation to the shape of the amplitude spectrum.  
(f) Joint filter responses.  Filter 2 and 3 responses (open symbols) to spectra with different focus errors are significantly further apart than 
filter 1 and 4 responses (closed symbols).  Hence, filters 2 and 3 provide more useful information for classifying focus error in this patch.
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peak at 590, 530, and 460 nm.  In most cam-
eras, chromatic defocus is markedly less than
in the human eye.  But even in high-quality
achromatic prime lenses, measureable 
chromatic defocus occurs between the R 
and B sensors.3

General Principle of Estimation
The first job of a good estimator is to deter-
mine the signal features that carry good infor-
mation about the task-relevant variable.  Figure 
1(d) shows the amplitude spectra of four generic 
filters (shaded Gaussian bumps), along with
spectra for three amounts of focus error.  Each
filter increases its response according to the
local power in the amplitude spectrum (above
the noise floor) at the spatial frequencies to 
which each filter is sensitive.  This set of spatial-
frequency filters [Fig. 1(d)] provides a digital 
approximation of amplitude spectra [Fig. 1(e)], 
much like a bass equalizer on a car stereo pro-
vides a digital approximation of the amplitude
spectra of sound waves.  Figure 1(f) plots the 

responses of the filters against each other.  Filters 
2 and 3 are more useful than 1 and 4 for dis-
criminating the three focus errors in the patch. 
The problem of estimating focus error in a

particular image patch is trivial compared to
the task of estimating focus error in a random
image patch.  Natural-image variation intro-
duces task-irrelevant changes in the typical 
1/f shape of the amplitude spectrum that
makes the problem difficult.  But focus error
can be estimated because it introduces shape
changes that are more dramatic than those
introduced by image variation.  In general, 
if a measureable signal varies more due to the
task-relevant variable than to task-irrelevant
image variation, then the accurate estimation
of the task-relevant variable is possible.4,5
For the current task of focus error estimation
in human and smartphone camera lenses, this
condition holds. 
Figure 2 demonstrates that this condition

holds in the human visual system.  Figure 2(a)
shows examples from a training set; focus error 

varies down the rows, image content varies
across the columns [Fig 2(a)].  Image varia-
tion introduces task-irrelevant variability in 
the shape of the spectrum [Fig. 2(b)], but focus 
error introduces much larger changes [Fig. 2(c)].  
The most useful changes due to focus error
occur within a critical spatial-frequency band.
Natural images, because of their 1/f spectra,
rarely have power exceeding the noise floor at
high spatial frequencies.  Focus error has little
effect on low spatial frequencies.  Thus, inter-
mediate spatial frequencies carry the most
useful information about focus error.  This is
the critical frequency band. 
Human chromatic aberration [Figs. 2(b) and

2(c), (insets)] causes systematic differences
between the spectra in two (or more) color
channels that provide useful information
about the sign of focus error.  For negative
errors (i.e., focus too far), the short-wave-
length sensor image is in better focus than the
long-wavelength sensor image.  For positive
errors (focus too close), the long-wavelength
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Fig. 2:  Impact of natural-image variability and focus error on shapes of amplitude spectra.  Results shown for a lens with human chromatic
aberration for the L- and S-cone images and for a 2-mm pupil.  (a) Training set of natural image patches with different focus errors (8400 
patches = 21 focus errors x 400 patches per error).  (b) Amplitude spectra of the L-cone image (red) and S-cone image (blue) for four different
well-focused image patches. (c) Amplitude spectra for the same patch with five different focus errors.  The eyeball icon indicates focus error
geometry:  Negative and positive focus errors correspond to when the lens is focused behind and in front of the target, respectively.  The shape 
of the amplitude spectrum varies randomly with the image patch and changes systematically with the focus error.  The amplitude spectrum shape
provides good information about focus-error magnitude.  The L-cone or S-cone spectrum with more energy at higher frequencies provides good
information about focus-error sign.
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sensor image is in better focus.  Chromatic
aberration thus introduces a useful signal for
determining the sign of a focus error.

Results
We developed an algorithm for estimating
focus error based on the principles and obser-
vations described above.2 We next describe
its performance for the human visual system
and for a popular smartphone camera: the
Samsung Galaxy S4.  For the human visual
system, we assumed a 2-mm pupil (typical for
daylight), optics with human chromatic aber-
ration, sensors with the wavelength sensitivi-
ties of the L and S cones, and a plausible input
noise level.16 For the Galaxy S4, we assumed

a fixed 1.7-mm aperture and measured its
optics, wavelength sensitivity, and noise in the
R and B sensors.3 (Two of the three available
sensors are used for computational simplicity.
Similar performance is obtained with all three 
sensors together.)  Note that image blur due to
focus error decreases as aperture size decreases. 
Vision systems with larger apertures and com-
parable optics will, in general, yield more
accurate results than those presented here.
Next, in each vision system we found the

spatial-frequency filters that are most useful
for estimating focus error from –2.5 to +2.5D
using Accuracy Maximization Analysis, a
recently developed task-specific method for
dimensionality reduction.  Assuming a focus

distance of 40 cm, this range of focus errors
corresponds to distances of 20 cm to infinity.
For the human visual system, the filters oper-
ate on the amplitude spectra of the L- and 
S-cone sensor images.  For the Galaxy S4
smartphone, the filters operate on the ampli-
tude spectra of the R- and B-sensor images. 
The four most useful filters for estimating

focus error in the human eye are shown in 
Fig. 3(b).  These filters find the spectral 
features that provide the best possible infor-
mation about focus error, given the variability
of natural images and the effect of focus error 
in each color channel on the captured images’
amplitude spectra.  The filters concentrate in
and near the frequency range known to drive
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Fig. 3:  Focus-error estimation in the human visual system.  (a) Schematic of optimal focus-error estimation and how it can be used to eliminate
focus error as part of an autofocusing routine.  The estimate of focus error can be used as input to an autofocus routine to null focus error.  (b)
Spatial-frequency filters that extract the most useful information for estimating focus error in the human visual system.  The filters weight and sum
of the amplitude spectra of captured L-cone and S-cone images.  The first filter is selective for differences in the shapes of the L- and S-cone
amplitude spectra and is most useful for discriminating focus-error sign.  The second filter is less selective for differences between the color 
channels.  The filters apply more weight to an intermediate frequency band because this band carries the most useful information.  (c) Filters 1
and 2 responses to different retinal images (symbols) with different focus errors (colors).  The conditional filter responses  cluster as a function 
of focus error and can be approximated by a Gaussian distribution.  (d) Optimal focus-error estimates across thousands of test images.  Error
bars represent 68% confidence intervals.  Inset shows the rectangular approximation of the human-cone mosaic used to sample the images.
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human accommodation.9 These filters also
have properties that are similar to chromatic
double-opponent cells in early visual cortex,11
which have primarily been studied in the 
context of color processing. 
The responses of the two most useful filters

to thousands of randomly sampled natural-
image patches with different amounts of focus
error are shown in Fig. 3(c).  Each symbol
represents the filter responses to a particular
individual image patch.  Each color represents
a different focus error.  The fact that the
responses cluster by focus error indicates 
that the filters extract good information about
focus error from the shape of the amplitude
spectrum.  Next, we characterized the 

joint filter responses by fitting Gaussians
gauss(R;µu,Su) = p(R|DDu ) to each response
cluster, where µu and Su are the sample means
and covariance [colored ellipses, Fig. 3(b)].
Figure 3(d) shows focus-error estimation 
performance in the human visual system for
thousands of randomly sampled image
patches.  In humans, high-precision (±1/16D)
unbiased estimates of focus error are obtain-
able from small patches from the L- and 
S-cone sensor images of natural scenes. 
The human visual system has much more

chromatic aberration than the lenses in typical
DSLR and smartphone cameras.  How well do
these same methods work in DSLRs and
smartphones?  We have previously examined

the performance attainable in a DSLR
camera.3 Here, we determine focus-error 
estimation performance in the Galaxy S4.  
We measured the R, G, and B sensor wave-
length sensitivities and the optics of the
Galaxy S4 over a range of 5D and then used
our methods to estimate focus error. 
Estimation results are shown in Fig. 4.  

Figure 4(a) shows focus-error estimates for
each of four randomly sampled patches across
the range of focus errors.  In each subpanel,
the inset shows the posterior probability distri-
bution over focus error for the condition 
circled in red.  For reference, the full-size
image from which the four patches were 
sampled is shown in Fig. 4(b).  Performance is
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Fig. 4:  Focus-error estimation with Samsung Galaxy S4 smartphone optics and sensors.  (a) Focus-error estimation for four randomly sampled
natural image patches (128 x 128 pixels) over –2.5 to +2.5D.  Insets show the particular image patch (without blur) and the posterior probability
over focus error for one particular groundtruth focus error (red circle).  Dashed vertical line indicates the true focus error.  The variance (width)
of the posterior can be used as a measure of estimate reliability.  Performance is nearly identical with 64 x 64 pixel patches. (b) Original image
from which the patches were sampled.  (c) Average estimation performance as a function of focus error across 8400 test patches (21 focus errors 
x 400 patches).  Error bars are 68% confidence intervals.  Inset shows the sensor pattern that was used to sample the images.  (d) Grand histo-
gram of estimation errors.  90% of estimates are accurate to +0.25D (approximately the human blur detection threshold).10 Colored lines show
error histogram conditioned on the standard deviation of the posterior: low (SD = 0.00–0.05D; blue), medium (SD = 0.05–0.15D; red), high 
(SD > 0.15D; orange).  Upper right inset shows that the standard deviation of the estimation error increases with the standard deviation of the
posterior probability distribution.  Upper left inset shows the proportion of the time focus-error sign is estimated correctly as a function of the
true focus error.  For focus errors 0.5D or larger, the sign is estimated correctly 99% of the time.
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good for each patch, but it is not perfect, and
some patches produce more accurate estimates
than others.  For example, estimates for the
patch in the rightmost subpanel of Fig. 4(a)
are the least accurate on average.  The shadows
against the street curb make the sharp patch
(inset) look somewhat blurry.  Some of the
same features that confuse humans seem to
confuse the algorithm.  Also, a featureless 
surface carries no information about focus
error, and therefore yields highly inaccurate
estimates.  This variability in accuracy across
patches is an unavoidable aspect of estimation
performance with natural stimuli.10
It would therefore be advantageous for an

autofocus routine to have not just an estimate
of focus error but of each estimate’s reliability.
The standard deviation (width) of the poste-
rior probability distribution predicts the relia-
bility of each patch-by-patch estimate.  This
signal could therefore have utility in the
design of a control system for autofocusing a
smartphone camera. 
Estimation performance in the Samsung

Galaxy S4, averaged across thousands of
patches, is shown in Figs. 4(c) and 4(d).  None
of the test patches were in the training set,
indicating that the estimation algorithm
should generalize well to arbitrary images.
The grand histogram of estimate errors is
shown in Fig. 4(d).  Errors are generally quite
small. 90% of the estimates are within +0.25D
of the correct value.  Given the 1.7-mm aper-
ture and 4.2-mm focal length of the Galaxy S4
(f-stop of f/2.4), errors of ~0.25D will be
within the depth of field.  Sign estimation was
also accurate.
The colored lines in Fig. 4(d) show error

histograms conditioned on the standard devia-
tion of the posterior probability distribution.
When the posterior probability distribution
has a low standard deviation [e.g., Fig 4(a),
left panel] errors are very small.  When the
posterior probability distribution has a high
standard deviation [e.g., Fig 4(a), right panel],
errors tend to be larger.  These results show
that, in both humans and a popular smart-
phone camera, accurate estimates of focus
error (including sign) can be obtained from
small patches of individual images. 

Applications
The method described here provides highly
accurate estimates of focus error, given the
optics and sensors in a popular smartphone
camera, and it has the potential to signifi-

cantly improve the autofocus routines in 
smartphone cameras and other digital-imaging 
devices.  It has the advantages of both 
contrast-measurement and phase-detection
autofocus techniques, without their disadvan-
tages.  Like phase detection, the method 
provides estimates of focus error (magnitude
and sign) but unlike phase detection, it does
not require specialized hardware.  Like 
contrast measurement, the method is image
based and can operate in “Live View” mode,
but unlike contrast measurement, it does not
require an iterative search for best focus.  And
because the method is image based and can be
implemented exclusively in software, it has
the potential to improve performance without
increasing manufacturing cost.
This same method for estimating focus

error may also be useful for improving certain
medical technologies.  A number of different
assistive vision devices have hit the market in
recent years.  These devices act, essentially, 
as digital magnifying glasses.  If these devices
could benefit from improved autofocusing,
our method could apply there as well. 
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