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Abstract 
A core goal of visual neuroscience is to predict human perceptual performance from natural 
signals. Performance in any natural task can be impacted by at least three sources of 
uncertainty: stimulus variability, internal noise, and sub-optimal computations. Determining the 
relative importance of these factors has been a focus of interest for decades, but most 
successes have been achieved with simple tasks and simple stimuli. Drawing quantitative links 
directly from natural signals to perceptual performance has proven a substantial challenge. 
Here, we develop an image-computable (pixels in, estimates out) Bayesian ideal observer that 
makes optimal use of the statistics relating image movies to speed. The optimal computations 
bear striking resemblance to descriptive models proposed to account for neural activity in area 
MT. We develop a model based on the ideal, stimulate it with naturalistic signals, predict the 
behavioral signatures of each performance-limiting factor, and test the predictions in an 
interlocking series of speed discrimination experiments. The critical experiment collects human 
responses to repeated presentations of each unique image movie. The model, highly 
constrained by the earlier experiments, tightly predicts human response consistency without 
free parameters. This result implies that human observers use near-optimal computations to 
estimate speed, and that human performance is near-exclusively limited by natural stimulus 
variability and internal noise. The results demonstrate that human performance can be predicted 
from a task-specific statistical analysis of naturalistic stimuli, show that image-computable ideal 
observer analysis can be generalized from simple to natural stimuli, and encourage similar 
analyses in other domains.  
 
  



Introduction 
Human beings are remarkably adept at a wide variety of fundamental sensory-perceptual tasks. 
A sufficiently difficult task, however, can reveal the limits of human performance. A principal aim 
of perception science and systems neuroscience is to determine the limits of performance, and 
then to determine the sources of those limits. Performance limits and the factors that determine 
them have been rigorously investigated with simple tasks and stimuli. Ultimately, perception 
science aims to achieve the same rigorous understanding of how vision works in the real world. 
The current manuscript works towards this understanding by building upon recent advances for 
predicting the properties and performance of visual systems from natural stimuli.  
 
In natural viewing, there exist at least three factors that limit performance: natural stimulus 
variability, internal noise, and suboptimal computations. Testing the relative importance of these 
sources requires two ingredients: i) an image-computable (images in, estimates out) ideal 
observer that specifies optimal performance in the task, and ii) experiments that can distinguish 
the behavioral signatures of each factor. Here, we develop theoretical and empirical methods 
that can predict and diagnose the impact of each source in mid-level visual tasks with natural 
and naturalistic stimuli. We apply these methods to the specific task of retinal speed estimation, 
a critical ability for estimating the motion of objects and the self through the environment.  
 
When a pattern of light falls on the retina, millions of photoreceptors transmit information to the 
brain about the visual scene. The visual system uses this information to build stable 
representations of stimulus properties (i.e., latent variables) that are relevant for survival and 
reproduction. The visual system successfully extracts these critical latent variables from natural 
images in spite of tremendous stimulus variability; infinitely many unique retinal images (i.e. light 
patterns) are consistent with each value of a given latent variable. Some image features that 
vary across different natural images are particularly informative for extracting the latent 
variable(s) of interest. These are the features that the visual system should encode. Many other 
image features carry no relevant information. These features should be ignored. Variation in 
both the relevant and irrelevant feature spaces can limit performance. But the impact of stimulus 
variability on performance is minimized only if all relevant features are encoded. Thus, stimulus 
variability can differentially impact performance depending on the quality of feature encoding.  
 
Signal detection theory posits that sensory-perceptual performance is based on the value of a 
decision variable1. But signal detection theory does not specify how to obtain the decision 
variable from the stimulus. Image-computable observer models do2-6. Image-computable ideal 
observer models specify how to encode and process the most useful stimulus features7-13. The 
explicit description of optimal processing provided by an image-computable ideal observer 
specifies how natural stimulus variability should propagate into the decision variable. Optimal 
processing minimizes stimulus-driven variation in the decision variable. Thus, stimulus variability 
and the optimal processing jointly set a fundamental limit on performance. 
 
An image-computable ideal observer for estimating retinal image speed from local regions of 
natural images is shown in Fig. 1A. Given a set of stimuli, it uses the optimal computations 
(encoding receptive fields, pooling, decoding) for estimating speed from natural image movies13. 
The ideal observer therefore provides a principled benchmark against which to compare human 
performance. The tradition in ideal observer analysis is to constrain the ideal observer by 
stimulus and physiological factors known to limit the information content in the stimulus9. Natural 
stimulus variability and early measurement noise are two such factors that constrain the ideal 
observer (red text, Fig. 1A). The optimal computations govern how natural stimulus variability 
and early noise propagate into the ideal decision variable, thereby determining its variance (Fig. 
1A). This variance is a critical determinant of ideal observer performance. 



 
Figure 1. Ideal observer and plan for manuscript. A Ideal observer. Speed (i.e. the latent variable) can take on one of 
many values. Many different image movies share the same speed. The ideal observer is defined by the optimal 
computations (encoding, pooling, decoding) for estimating speed with natural stimuli. The optimal computations are 
grounded in natural scene statistics (gray box). For each unique movie, the ideal observer outputs a point estimate of 
speed. The ideal observer’s estimates vary across movies primarily because of natural stimulus variability, variability 
that is external to the observer. The degraded ideal observer is matched to overall human performance by adding late 
noise. B Plan for the manuscript. First, we measure natural stimuli and early noise to constrain an ideal observer for 
speed estimation. Next, we run an experiment and fit the efficiency of each human observer (1 free parameter) by 
comparing human to ideal sensitivity. Finally, we run a double-pass experiment and show that efficiency predicts 
human response repeatability (0 free parameters).  
 
Human performance often tracks the pattern of ideal observer performance, but rarely achieves 
the same absolute performance levels. This is because humans are often limited by additional 
factors that are insufficiently well understood to include in the ideal observer. Ideal observers 
can therefore help identify and quantify the unknown factors responsible for the performance 
gap, and can serve as useful starting points for models of human performance. 
 
To convert the ideal observer into a model of human observers, we consider two additional 
performance-limiting factors: late internal noise and suboptimal computations. Late internal 
noise is random, and is modeled at the level of the decision variable (Fig. 1A). Suboptimal 
computations (not depicted in Fig. 1A) are deterministic, and can be modeled at various 
computational stages. Both of these factors have the potential to increase the variance of the 
human decision variable compared to the ideal. Can the impact of these factors be 
distinguished experimentally, and what is the relative importance of each? Using 
complementary computational and experimental techniques, we show that in speed 
discrimination with naturalistic stimuli, i) humans underperform the ideal near-exclusively 
because of late internal noise, ii) the deterministic computations (encoding, pooling, decoding) 
performed by the human visual system are very nearly optimal, and iii) natural stimulus 
variability equivalently limits human and ideal performance. The work demonstrates that a task-
specific analysis of naturalistic stimuli can tightly predict human performance, and shows that 
ideal observer analysis can be fruitfully applied to mid-level visual tasks with natural and 
naturalistic stimuli. 
 
Results 
The plan for the manuscript is diagrammed in Fig. 1B. First, we develop an image-computable 
ideal observer model of retinal speed estimation that is constrained by measurements of natural 
stimulus variability and early noise, and then compare human to ideal performance in an 
experiment with matched stimuli. The first main experiment shows that humans track the 
predictions of the ideal but are consistently less sensitive: one free parameter—efficiency—
accounts for the gap between human and ideal performance. Next, we hypothesize that human 
inefficiency is due to late internal noise, and not sub-optimal computations. This hypothesis 
predicts that natural stimulus variability should equally limit human and ideal observers. The 
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second main experiment tests this hypothesis. Human observers viewed thousands of trials with 
natural stimuli in which each unique trial was presented twice. In this paradigm, the repeatability 
of responses reveals the respective roles of stimulus- and noise-driven variability. With zero 
additional free parameters, efficiency predicts response repeatability and the proportion of 
behavioral variability that is due to stimulus- and noise-driven components.  
 
Measuring natural stimuli 
A fundamental problem of perception is that multiple proximal stimuli can arise from the same 
distal cause. This stimulus variability is an important source of uncertainty that will limit human 
and ideal speed discrimination performance. To measure natural stimulus variability, we 
photographed a large number of natural scenes10,13, and then drifted those photographs at 
known speeds behind a one degree aperture, approximately the size of foveal receptive fields in 
early visual cortex14,15. This procedure generates motion signals that are equivalent to those 
obtained by rotating the eye during smooth tracking of a target (Fig. 2A). The sampled set of 
stimuli approximates, but almost certainly underestimates, the variability present in the natural 
stimulus ensemble; looming and discontinuous motions, for example, are not represented in our 
training set16,17. Thus, the forthcoming estimates of the impact of naturalistic stimulus variability 
on ideal and human performance are likely to underestimate the impact of stimulus variability on 
human performance in natural viewing. 
 
Movies drifted leftward or rightward with speeds ranging between 0.25 to 8.0 deg/sec. Movies 
were presented for 250ms, the approximate duration of a typical human fixation. The sampling 
procedure yielded tens of thousands of unique stimuli (i.e. image movies) at dozens of unique 
speeds. Image movies were then filtered so that only vertical orientations were present; that is, 
the stimuli were vertically averaged (i.e. xt) versions of full space-time (i.e. xyt) movies (Fig. 2B). 
Vertical averaging reduces stimulus complexity, but the resulting stimuli are still substantially 
more realistic than classic motion stimuli like drifiting sinewaves. Furthermore, vertically oriented 
receptive fields respond identically to vertically averaged and original movies (Fig. 2C). Thus, in 
an individual orientation column, the filtered movies should generate the same response 
statistics as the full space-time movies13,18. Finally, the contrast of the vertically-averaged stimuli 
were fixed to the modal contrast in natural scenes (see Discussion). Thus, our stimuli represent 
a compromise between simple and real-world stimuli, allowing us to run experiments with more 
natural stimuli without sacrificing quantitative rigor and interpretability. Our analysis should be 
generalizable to full space-time movies with more realistic forms of motion. 
 

 
Figure 2. Naturalistic image movies and pre-processing. A Natural image movies were obtained by drifting 
photographs of natural scenes at known speeds behind one degree apertures for 250ms. Rotating the eye in its 
socket (e.g. tracking an object) creates the same pattern of motion in the stationary background. Optical properties of 
the eye and the temporal integration of the photoreceptors were also modeled. B Full space-time image movies (Ixyt) 
and vertically filtered space-time image movies (Ixt). Moving images can be represented as oriented signals in space-
time. C Vertically oriented receptive fields respond identically to full space-time movies and vertically filtered movies. 
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Measuring early noise 
All measurement devices are corrupted by measurement noise. The human visual system is no 
exception. Early measurement noise occurs at the level of the retinal image and places a 
fundamental limit on how well targets can be detected. Possible sources of early noise include 
the Poisson variability of light itself and the stochastic nature of the photoreceptor and ganglion 
cell responses19. The ideal observer for speed discrimination should be constrained by the 
same early noise as the human observer if it is to provide an accurate indication of the 
theoretically achievable human performance limits (see Fig. 1A).  
 
Human observers performed a target detection task using the equivalent input noise 
paradigm7,20. The task was to detect a known target embedded in dynamic Gaussian white 
noise. On each trial, human observers viewed two stimuli in rapid succession, and tried to 
identify the stimulus containing the target (Fig. 3A,B). The time-course of stimulus presentation 
was identical to the forthcoming speed discrimination experiment. Figure 2C shows 
psychometric functions for target detection in one human observer as a function of target 
contrast. Each function corresponds to a different noise contrast. Detection thresholds, which 
are the target contrasts required to identify the target interval 76% of the time (i.e. d-prime of 1.0 
in a 2IFC task), are shown for two different targets (3.0 and 4.5 cpd) in Fig. 3D. Consistent with 
previous studies, contrast power at threshold increases linearly with pixel noise7,21. Figure 2E 
shows the same data plotted on logarithmic axes, a common convention in the literature. There 
are two critical points on this function. The first is its value when pixel noise equals zero, where 
detection performance is limited only by internal noise. The second is at double the contrast 
power of the first point—the so-called ‘knee’ of the function—where the pixel noise equals the 
internal noise (see Supplement). This level of pixel noise is known as the equivalent input noise. 
 
Internal noise was estimated separately for each target type and human observer. Estimates 
were consistent across target types and were thus averaged. Internal noise estimates for the 
first, second, and third human observers are 2.5%, 2.3% and 2.9%, respectively (Fig. S1). 
These values are in line with previous reports7,20,22. It has been argued that the controlling 
internal noise in target detection experiments may be due only to early noise21. This argument is 
controversial. The controlling noise could be early, but it could also arise at later (e.g. decision) 
stages. The equivalent input noise thus represents an upper bound on the amount of early noise 
in the human visual system. Because the upper bound is small, plausible amounts of early noise 
within the bound only weakly impact ideal observer performance (see below, Fig. S2). The ideal 
observer that we present in the main text is limited by early noise at this upper bound. 
 

 
Figure 3. Measuring early noise with a target detection experiment. A Stimulus construction. On each interval, the 
stimulus was either a target sinewave or a middle gray luminance pattern corrupted by dynamic noise. B On each 
trial, the task was to report which of two intervals contained the target stimulus. C Psychometric functions from one 
human observer (S1) for different noise contrasts. D Target contrast power at the detection threshold for the same 
human observer. Thresholds increase linearly with noise contrast power. E Target contrast power at detection 
threshold plotted on a log-log axis (same data as D). Arrows indicate the estimate of equivalent input noise. 
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Ideal observer 
An ideal observer performs a task optimally, making the best possible use of the available 
information given stimulus variability and specified biological constraints. In addition to natural 
stimulus variability and early noise (see Figs. 2,3), we model the optics of the eye23, the 
temporal integration of photoreceptors24, and the linear filtering25 and response normalization26-

28 of cortical receptive fields, because they are well established features of early visual 
processing and because they determine the information available for processing.  
 
Assuming the relevant factors have been accurately modeled, ideal observers provide principled 
benchmarks against which to compare human performance. Humans often track the pattern but 
fail to achieve the absolute limits of ideal performance. As a consequence, ideal observers often 
serve as principled starting points for determining additional unknown factors that cause 
humans to fall short of theoretically achievable performance limits.  
 
Developing an ideal observer with natural stimuli is challenging because it is unclear a priori 
which stimulus features are most useful for the task. We find the optimal receptive fields for 
speed estimation using a recently developed Bayesian statistical learning method called 
Accuracy Maximization Analysis18,29,30 (AMA). Given a stimulus set, the method learns the 
receptive fields that encode the most useful stimulus features for the task (Fig. S3A). Once the 
optimal features are determined, the next step is to determine how to optimally pool and decode 
the responses 

    R = R1, R2 ,!, Rn⎡⎣ ⎤⎦  of the receptive fields that select for those features where  n  is 
the total number of receptive fields. Eight receptive fields capture essentially all of the useful 
stimulus information; additional receptive fields provide negligible improvements in 
performance13.  
 
The optimal pooling rules are specified by the joint statistics between the receptive field 
responses and the latent variable18,31. With appropriate response normalization, the responses 
across stimuli for each speed are conditionally Gaussian13,32,33 (Fig. S3B). To obtain the 
likelihood of a particular speed, the Gaussian statistics require that the receptive field responses 
to a given stimulus be pooled via weighted quadratic summation (see Supplement; Fig. S3C). 
The computations for computing the likelihood thus instantiate an enhanced version of the 
motion-energy model, indicating that energy-model-like computations are the normative 
computations supporting speed estimation with natural stimuli2,18. The speed tuning curves of 
hypothetical neurons implementing these computations mimic the properties of speed tuning 
curves in area MT34 (Fig. SD). Finally, an appropriate read out of the population response of 
these hypothetical neurons is equivalent to decoding the optimal estimate from the posterior 
probability distribution    p X | R( )  over speed (Fig. S3EF). If a 0,1 cost function is assumed, the 
latent variable value corresponding to the posterior max is the optimal estimate. We have 
previously verified that reasonable changes to the prior and cost function do not appreciably 
alter the optimal receptive fields, pooling rules, and estimation performance30.  
 
The factors thus far described in the paper—stimulus variability and early noise, biological 
constraints, and the optimal computations (encoding, pooling, decoding)—all impact ideal 
performance in our task. The precise amount of early noise is the only factor subject to some 
uncertainty, given a stimulus set. However, within the bound set by the detection experiment 
(see Fig. 3), different amounts of early noise have only a minor effect on ideal performance (Fig. 
S2). Thus, estimates of ideal performance are stable and set overwhelmingly by stimulus 
variability. 
 
 



Measuring efficiency 
The ideal observer benchmarks how well humans use the stimulus information available for the 
task. Efficiency quantifies how human sensitivity   d 'human  compares to ideal observer sensitivity 

  d 'ideal  and is given by 

 
  
η =

′dhuman

′dideal
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       (1) 

 
where   σ human

2  is the total variance of the human decision variable,   σ ideal
2  is the total variance of 

the ideal decision variable, and   σ E
2  is the stimulus-driven component of the ideal decision 

variable. The third approximate equality in Eq. 1 assumes that stimulus-driven variability equals 
ideal observer variability because the impact of early noise is bounded to be small (see Fig. 3). 
Supplementary analyses show that the approximation and the uncertainty about the precise 
amount of early noise within the bound do not affect estimates of human efficiency by more than 
10% (see Methods; Fig. S2).  
 
To measure human sensitivity, we ran a two-interval forced choice (2IFC) speed discrimination 
experiment. On each trial, human observers viewed two moving stimuli in rapid succession, and 
indicated which stimulus was moving more quickly (Fig. 4A). This design is similar to classic 
psychophysical experiments with one critical difference. Rather than presenting the same (or 
very similar) stimuli in each condition hundreds of times, we present hundreds of unique stimuli 
one time each. This stimulus variability jointly limits human and ideal performance. Human 
sensitivity is computed using standard expressions from signal detection theory 

  ′dhuman = 2Φ−1 PChuman( )  where  PChuman  is the proportion of times that the comparison is chosen 

in a given condition in a 2IFC experiment and  Φ
−1 ⋅( )  is the inverse cumulative normal. (This 

expression is correct assuming the observer uses the optimal criterion, an assumption that is 
justified by the data; Fig. S4) 
 
To measure ideal sensitivity, we ran the ideal observer in a simulated experiment with the same 
stimuli as the human. (Note that the ideal observer was trained on different stimuli than the 
human and ideal observers were tested on.) Ideal sensitivity (i.e. d-prime) was computed 
directly from the distributions of ideal observer speed estimates in each condition (Fig. 4B). 
Human and ideal sensitivities across all speeds are linearly related (Fig. 4C). Rearranging Eq. 1 

shows that human sensitivity  ′dhuman = η ′dideal  equals the ideal observer sensitivity degraded 
(scaled) by the square root of the efficiency. Thus, a single free parameter (efficiency) relates 
the pattern of human and ideal sensitivities for all conditions. The efficiencies of the first, 
second, and third human observers are 0.43, 0.41, and 0.17, respectively (Fig. S5). 
  
Transforming the sensitivity data back into percent comparison chosen shows that the details of 
the degraded ideal nicely account for the human psychometric functions (Fig. 4D). The 
psychometric functions can be summarized by the speed discrimination thresholds (d-prime = 
1.0; 76% correct in a 2IFC task). The pattern of human and ideal thresholds match; the 
proportional increases of the human and ideal threshold functions with speed are the same (Fig. 
4E). These results quantify human uncertainty   σ human

2 , show that an ideal observer analysis of 
naturalistic stimuli predicts the pattern of human speed discrimination performance, and 
replicate our own previously published findings13.  



 
Figure 4. Measuring speed discrimination. A The task in a two-interval forced choice experiment was to report the 
interval containing the faster of two natural image movies. Unlike classic psychophysical studies, which present the 
same stimuli hundreds of times, the current study presents hundreds of unique stimuli one time each. This design 
injects naturalistic stimulus variability into the experiment. Human responses are assumed to be based on samples 
from decision variable distributions (inset). B Ideal observer estimates across hundreds of standard (red) and 
comparison movies (white) at one standard speed (3 deg/sec) and four comparison speeds. C Human vs. ideal 
observer sensitivity for all standard and comparison speeds. Shaded regions mark regions of plot where humans are 
less efficient than ideal but are still performing the task. For all conditions, humans are less sensitive than the ideal 

observer by a single scale factor: efficiency:  ′d
human

= η ′d
ideal

. Negative d-primes correspond to conditions in which the 
comparison was slower than the standard. D Psychometric functions for one human observer (symbols) at five 
standard speeds. The degraded ideal observer (solid curves) matches the efficiency of the human observer (one 
parameter fit to human data). E Human speed discrimination thresholds (d-prime = 1.0) as a function of standard 
speed for three human observers (symbols) on a semi-log plot. The pattern of human thresholds matches ideal 
observer thresholds (solid curve). Vertically shifting the ideal observer thresholds by an amount set by each human’s 
efficiency (arrows) shows degraded observer performance (solid curves, one free parameter fit per human). 
 
Together, the ideal observer and speed discrimination experiment reveal the degree of human 
inefficiency (i.e. how far human performance falls short of the theoretical ideal). But they cannot 
determine the sources of this inefficiency. Humans could be inefficient because of late noise. 
Humans could also be inefficient because of suboptimal computations. If inefficiency is due 
exclusively to late noise, stimulus variability must equally limit human and ideal observer 
performance. If human inefficiency is partly due to suboptimal computations, stimulus variability 
will cause more stimulus-driven uncertainty in the human than in the ideal. How can human 
behavioral variability be partitioned to determine the sources of inefficiency in speed 
perception? To do so, additional experimental tools are required. 
 
Predicting and measuring decision variable correlation 
A double pass experiment, when paired with ideal observer analysis, can determine why human 
performance falls short of the theoretical ideal. In a double pass experiment35-37, each human 
observer gives a response to each of a large number of unique trials (i.e. the first pass), and 
then performs the entire experiment again (i.e. the second pass). Double pass experiments can 
‘unpack’ each point on the psychometric function (Fig. 5AB), providing far more information 
about the factors driving and limiting human performance than standard single pass 
experiments. The correlation in the human decision variable across passes—decision variable 
correlation—is key for identifying the factors that limit performance and determine efficiency35,38.  
 
The power of this experimental design is that it enables behavioral variability to be partitioned 
into correlated and uncorrelated factors. Factors that are correlated across passes, like the 
stimuli, increase the correlation of the decision variable across passes. Factors that are 
uncorrelated across passes, like internal noise, decrease the correlation of the decision variable 
across passes. If the variance of the human decision variable is dictated only by stimulus-driven 
variability, decision variable correlation will equal 1.0. If the variance of the human decision 
variable is dictated only by internal noise, decision variable correlation will equal 0.0. If both 
stimulus-driven variability and internal noise play a role, the correlation will have an intermediate 
value.  

0 2 4 60.03

0.1

0.3

1.0

3.0

Speed (deg/sec)

Th
re

sh
old

 (d
eg

/se
c)Time

Response

250ms

Interval 2

100ms

ISI

250ms

Interval 1

A D E  

S1
S2
S3

0 2 4 6 8
Speed (deg/sec)

S1
= 0.43

C

-8 -4 0 4 8-8

-4

0

4

8

Ideal d-prime

Hu
ma

n d
-p

rim
e

B Ideal Observer

Xstd=1.0º/s
Xstd=2.0º/s
Xstd=3.0º/s
Xstd=4.0º/s
Xstd=5.0º/s

S1
dhuman = dideal

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n C
mp

 C
ho

se
n

Estimated Speed (deg/sec)
540 2 31 6In

cr
ea

sin
g 

Co
m

pa
ris

on
 S

pe
ed

Ideal observer

Xstd=3.0º/s

Xcmp

Xstd

Human Observer

540 2 31 6
Estimated Speed (deg/sec)

XstdXcmp
Pr

ob
ab

ilit
y



 
Figure 5. Decision variable correlation and response repeatability in a double pass experiment. A Psychometric data 
from the first human observer and cumulative Gaussian fit plotted as proportion comparison chosen vs. d-prime for 
the standard speed of 1 deg/sec. (Same data as in Fig. 4D.) B Schematic for visualizing decision variable correlation 
across passes when standard and comparison speeds are identical (e.g. both equal 1 deg/sec). Samples correspond 
to individual double pass trials (small circles). The value of each sample represents the difference between the 
estimated speeds of the comparison and standard stimuli on each trial. Decision variable values corresponding to 
response agreements and disagreements fall in white and gray quadrants, respectively. Decision variable 
distributions with the decision variable correlation predicted by efficiency (solid ellipse) and by the null model with a 
decision variable correlation of zero (dashed ellipse). Decision variable correlation depends on the relative 
importance of correlated and uncorrelated factors across passes. Natural stimulus variability is correlated on each 
repeated trial of a double pass experiment; internal noise is not. Criteria on each pass (vertical and horizontal lines, 
respectively) are assumed to be optimal and at zero. C Predicted response counts (bars) for each response type (--, -
+, +-, ++) across passes (100 trials per condition) given the decision variable correlation shown in B. D Proportion of 
trials on which responses agreed across both passes of the double pass experiment as a function of proportion 
comparison chosen for one human observer. Agreement data (symbols) and prediction (solid curve) assuming that 
efficiency predicts decision variable correlation (i.e. that all human inefficiency is due to late noise). The null 
prediction assumes that the decision variable correlation across passes is zero (dashed curve). The agreement data 
is predicted directly from the efficiency of the human observer (zero free parameters). Error bars represent 68% 
bootstrapped confidence intervals on human agreement. Shaded regions represent 68% confidence intervals from 
10000 Monte Carlo simulations of the predicted agreement data assuming 100 trials per condition. 
 
Decision variable correlation, like the decision variable itself, cannot be measured directly using 
standard psychophysical methods. Rather, it must be inferred from the repeatability of 
responses across passes in each condition. The higher the decision variable correlation, the 
greater the proportion of times responses agree (i.e. repeat) in a given condition (Fig. 5BC; Fig. 
S6).  
 
In each condition, we used the pattern of response agreement to estimate decision variable 
correlation (Fig. 5BC), and then plotted agreement against the proportion of times the human 
observer (symbols) chose the comparison stimulus as faster (Fig. 5D). Human response 
agreement implies a decision variable correlation that is significantly different from zero. For the 
seven conditions shown in Fig. 5D (i.e. all comparison speeds at the 1 deg/sec standard speed), 
the maximum likelihood fit of decision variable correlation across the seven comparison levels is 
0.43. Thus, 43% of the total variance in the human decision variable is due to factors that are 
correlated across repeated presentations of the same trials.  
 
How should the estimate of decision variable correlation be interpreted? Human decision 
variable correlation across passes is given by 
	

  
ρ =

σ E
2

σ E
2 +σ I

2 =
σ E

2

σ human
2         (2) 
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where   σ E
2  is the stimulus-driven variance,   σ I

2  is the noise-driven variance, and   σ human
2  is the total 

variance of the human decision variable. Decision variable correlation is driven by stimulus 
variation, because the stimuli are perfectly correlated across passes.  
 
The estimated decision variable correlation is strikingly similar to the efficiency measured for 
each observer. Although the exact relationship between decision variable correlation and 
efficiency depends on the source of human inefficiency, the fact that they are similar is no 
accident. Under the hypothesis that all human inefficiency is due to noise, stimulus variability 
must impact human and ideal observers identically: the stimulus-driven variance in the human 
decision variable (  σ E

2  in Eq. 2) will equal the stimulus-driven variance in the ideal observer 

decision variable (   σ E
2  in Eq. 1). Plugging Eq. 1 into Eq. 2 shows that, under the stated 

hypothesis, human decision variable correlation equals efficiency 
 
 ρ =η           (3) 
 
This mathematical relationship has important consequences. It means that the estimate of 
human efficiency from the speed discrimination experiment (Fig. 4) provides a zero-free 
parameter prediction of human decision variable correlation in the double pass experiment (Fig. 
5). The behavioral data confirm this prediction. Human efficiency in the discrimination 
experiment quantitatively predicts human response agreement in the double-pass experiment 
(Fig. 5C; symbols vs. solid curve). The implication of this result is striking. It suggests that 
naturalistic stimulus variability equally limits human and ideal observers and thus that the source 
of human inefficiency is due near-exclusively to late noise. Human speed discrimination is 
therefore optimal except for the impact of late internal noise.  
 
These results generalize across all conditions and human observers. Fig. 6A shows response 
agreement vs. proportion comparison chosen for the first human observer in each of the five 
standard speed conditions. (Data from all human observers are shown in Fig. S7.) Fig. 6B 
summarizes the agreement data across all standard speeds for each human observer. 
Measured agreement is plotted against the agreement predicted by efficiency. 95% confidence 
intervals are also shown, which represent prediction uncertainty given the number of double-
pass trials in each condition. The decision variable correlations that best account for the 
response repeatability across all conditions of the first, second, and third human observers are 
0.45, 0.43, and 0.18, respectively (see Figs. S7-S8). For the first two observers, stimulus-driven 
variance and noise variance have approximately same magnitude. For all observers, the data is 
consistent with the hypothesis that decision variable correlation equals efficiency (solid curves), 
and is not consistent the null model in which decision variable correlation equals zero (dashed 
curves). Fig. 6C plots decision variable correlation against efficiency for each human observer. 
Efficiency tightly predicts decision variable correlation for all three human observers, with zero 
additional free parameters.  
 
These results indicate that, in two of three observers, naturalistic stimulus variability accounts 
for nearly half of all behavioral variability. Furthermore, the stimulus set that we used to probe 
speed discrimination performance almost certainly underestimates the importance of stimulus 
variability in natural viewing (see Discussion). These considerations suggest that in many tasks, 
the dominant performance-limiting factors may be external to the observer in natural viewing19. 



 
Figure 6. Predicted vs. measured response agreement and decision variable correlation. A Proportion response 
agreement vs. proportion comparison chosen for all five standard speeds (1-5deg/sec), for the first human observer. 
Human data (symbols) and predictions (curves) are shown using the same conventions as Fig. 5D. B Measured vs. 
predicted response agreement for all conditions and all human observers (symbols). Human agreement equals 
efficiency-predicted agreement for all three human observers (solid line); shaded regions indicate 95% confidence 
intervals on the prediction from 1000 Monte Carlo simulations. Efficiency-predicted agreement for the null model, 
which assumes decision variable correlation is zero, is also shown (dashed curve). C Decision variable correlation vs. 
efficiency for each human observer (symbols). Human efficiency, measured in first pass of the speed discrimination 
experiment, tightly predicts human decision variable correlation in the double pass experiment with zero free 
parameters. Error bars represent 95% bootstrapped confidence intervals on human efficiency and on human decision 
variable correlation. Shaded regions show the expected relationship between efficiency and decision variable 
correlation if humans use fixed suboptimal computations (i.e. sub-optimal receptive fields). Solid and dashed black 
lines are the best-fit regression lines, corresponding to receptive field correlations of 0.97 and 0.92, respectively. Red 
brackets indicate uncertainty about the precise value of efficiency due to uncertainty about the precise amount of 
early noise (see Fig. 2). 
 
Suboptimal computations 
Human efficiency predicts human decision variable correlation, but to strongly conclude that 
human inefficiency is due to late noise, it is important to verify that this result is inconsistent with 
other sources of inefficiency. What is the quantitative impact of fixed suboptimal computations 
on stimulus-driven variability? To address this question, we analyzed the estimates of a 
degraded observer that uses suboptimal receptive fields7,38-40. If the wrong features are 
encoded, informative features may be missed, irrelevant features may be processed, and the 
variance of the stimulus-driven component of the decision variable may be increased relative to 
the ideal. To create suboptimal receptive fields, we corrupted the optimal receptive fields with 
fixed samples of Gaussian white noise. Receptive field correlation (i.e. cosine similarity) 

quantifies the degree of sub-optimality 
  
ρf = fopt

T fsubopt fopt fsubopt( )  where 
  
fopt  and 

  
fsubopt  are the 

optimal and suboptimal receptive fields, respectively. We generated degraded observers with 
different receptive field correlations and examined estimation performance. We found that 
stimulus-driven variance   ασ E

2  of degraded observer estimates is a scaled version of the ideal 
stimulus-driven variance. The scale factor   α = 1 ρf

2  is equal to the squared inverse of receptive 
field correlation (Fig. S9). Thus, suboptimal receptive fields systematically increase the variance 
of the stimulus-driven component of the decision variable.  
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How do fixed suboptimal computations impact the relationship between efficiency and decision 
variable correlation? If humans are well modeled by a degraded observer with both late noise 
and suboptimal receptive fields, the total variance of the human estimates is given by 

  σ human
2 =ασ E

2 +σ I
2 . Replacing terms in Eqs. 1 and 2 and performing some simple algebra shows 

that the relationship between efficiency and decision variable correlation is given by 
 

  
ρ =αη = η

ρf
2          (4) 

 
Thus, with sub-optimal computations (i.e. receptive fields) decision variable correlation will be 
systematically larger than efficiency. This expression has been verified by simulation and a 
derivation from first principles (Fig. S10; see Supplement). (Note that when receptive field 
correlation equals 1.0, Eq. 4 reduces to Eq. 3.) We reanalyzed results in the context of Eq. 4, 
comparing the behavioral data to the predictions of various degraded observer models. For all 
three observers, decision variable correlation is larger than efficiency by 5%, corresponding to 
receptive field correlations of 0.97 (Fig. 6C). (Note that these numbers assume an ideal 
observer with early noise at the upper bound set by the detection experiment (see Fig. 2; Fig. 
S2). If zero noise is assumed, decision variable correlation exceeds efficiency by 15%, 
corresponding to receptive field correlation of 0.92.) The vast majority of human inefficiency 
(minimum 85%) is therefore attributable to late internal noise and not suboptimal feature 
encoding.	 
 
DISCUSSION 
Simple stimuli and/or simple tasks have dominated behavioral neuroscience because of the 
need for rigor and interpretability in assessing stimulus influences on neural and behavioral 
responses41. The present experiments demonstrate that, with appropriate techniques, the 
required rigor and interpretability can be obtained with naturalistic stimuli. We have shown that 
image-computable ideal observers can be fruitfully combined with human behavioral 
experiments to reveal the factors the limit behavioral performance in mid-level tasks with natural 
stimuli. In particular, an image-computable ideal observer, constrained by the same factors as 
the early visual system, predicts the pattern of human speed discrimination performance with 
naturalistic stimuli13. Perhaps more remarkably, human efficiency in the task predicts human 
decision variable correlation in a double pass experiment without free parameters, a result that 
holds only if the deterministic computations performed by humans are very nearly optimal.  
 
Stimulus variability and behavioral variability 
A fundamental premise of this paper is that natural stimulus variability limits behavioral 
performance and drives response repeatability. If this premise is correct, reducing stimulus 
variability should increase behavioral performance but decrease response repeatability. To test 
this prediction, we ran a new speed discrimination experiment using drifting random-phase 
sinewave gratings (Fig. 7; Fig. S11), a stimulus set with less variability than the set of 
naturalistic stimuli used in the main experiment. As predicted, human speed discrimination 
thresholds improve (Fig. 7A), responses become less repeatable (Fig. 7B), and decision 
variable correlation is systematically lower with sinewave stimuli (Fig. 7C). With reduced 
stimulus variability, internal noise—which is uncorrelated across stimulus repeats—becomes the 
dominant source of variability limiting human performance.  



 
Figure 7. Effects of reducing stimulus variability. A Speed discrimination psychometric functions for the first human 
observer with naturalistic stimuli (black curve) and drifting sinewave stimuli (gray curve) for a 1 deg/sec standard 
speed. Sinewave stimuli can be discriminated more precisely. B Proportion response agreement vs. proportion 
comparison chosen for naturalistic stimuli (black) and artificial stimuli (grey) for the same human observer. C Decision 
variable correlation with artificial stimuli vs. decision variable correlation with naturalistic stimuli for each human 
observer (symbols). Error bars represent 95% bootstrapped confidence intervals. Decision variable correlation is 
consistently lower when artificial stimuli are used. Note that reducing stimulus variability affects the decision variable 
correlation S3 less than it does observers S1 and S2. This is the expected pattern of results given that S3 had low 
decision variable correlation with naturalistic stimuli and was thus already dominated by internal noise (see Fig. 6C). 
 
Limitations and future directions 
One limitation of our approach, which is common to most psychophysical approaches, is that it 
cannot pinpoint the processing stage or brain area at which the limiting source of internal noise 
arises. Although we model it as occurring at the level of the decision variable, it could also occur 
at the encoding receptive field responses, the computation of the likelihood, the readout of the 
posterior into estimates, the placement of the criterion at the decision stage, or some 
combination of the above. We have ruled out the possibility that the noise limiting speed 
discrimination is early(Fig. 3; Fig. S2). But we cannot pinpoint where the limiting noise arises. 
Another limitation is that the approach cannot distinguish between different types of suboptimal 
computations. We modeled them by degrading each in the set of optimal receptive fields. But an 
array of computations that make suboptimal use of the available stimulus information could 
have similar effects. The answers to these questions are best addressed with 
neurophysiological methods. 
 
There are many possible directions for future work. First, there is a well established tradition of 
examining how changes in overall contrast impact speed sensitive neurons and speed 
perception4,42-47. All stimuli in the current experiment were fixed to the most common contrast in 
the natural image movie set.  As overall contrast is reduced speed sensitive neurons respond 
less vigorously, and moving stimuli are perceived to move more slowly42-44. It is widely believed 
that these effects occur because the visual system has internalized a prior for slow speed43. In 
the current manuscript, rather than covering well-trodden ground, we have focused on 
quantifying how image structure (i.e. the pattern of contrast) impacts speed estimation and 
discrimination. Thus, our results likely underestimate the impact of stimulus variability on ideal 
and human performance in natural viewing. The approach advanced in this manuscript can be 
generalized to examine how changes in overall contrast impact human and ideal performance. 
The role of stimulus variability has not been examined in this context. A thorough investigation 
of this issue is an important topic for future work. Finally, experiments should performed with 
with full space-time (i.e. xyt) movies, with stimuli containing looming and discontinuous 
motion16,17, and in a host of new tasks in vision and in other sensory modalities. New databases 
of natural images and sounds with groundtruth information about distal scenes will significantly 
aid these efforts48-50. 
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Sources of performance limits 
Efforts to determine the dominant factors that limit performance span research from sensation to 
cognition. The conclusions that researchers have reached are as diverse as the research areas 
in which the efforts have been undertaken. Stimulus noise19, physiological optics8, internal 
noise7,20-22, suboptimal computations39,51,52, trial-sequential dependences53, and various 
cognitive factors54 have all been implicated as the dominant factors that limit performance. What 
accounts for the diversity of these conclusions? We cannot provide a definitive answer, but we 
speculate that the relative importance of these factors is likely to depend on several factors.  
 
Evolution has pushed sensory-perceptual systems towards the optimal solutions for tasks that 
are critical for survival and reproduction. Humans are more likely to be assessed as optimal 
when visual systems are probed with stimuli that they evolved to process in tasks that they 
evolved to perform. In target detection tasks, for example, humans become progressively more 
efficient as stimuli become more natural8,55,56. Conversely, when stimuli and tasks bear little 
relation to those that drove the evolution of the system, the computations are less likely to be 
optimal. This issue suggests that a new scientific framework that takes these factors into 
account may help to reconcile these disparate findings. 
 
Image-computable ideal observers 
Ideal observer analysis has a long history in vision science and systems neuroscience. In 
conjunction with behavioral experiments, image-computable ideal observers have shown that 
human light sensitivity is as sensitive as allowed by the laws of physics19, that the shape of the 
human contrast sensitivity function is dictated by the optics of the human eye8, and that the 
pattern of human performance in a wide variety of basic psychophysical tasks can be predicted 
from first principles9.  
 
To develop an image-computable ideal observer, it is critical to have a characterization of the 
task-relevant stimulus statistics. Obtaining such a characterization has been out of reach for all 
but the simplest tasks with the simplest stimuli. The vision and systems neuroscience 
communities have traditionally focused on understanding how simple forms of stimulus 
variability (e.g. Poisson or Gaussian white noise) impact performance7,8,19,20,57. The impact of 
natural stimulus variability—the variation in light patterns associated with different natural 
scenes sharing the same latent variable values—has only recently begun to receive significant 
attention6,10-13,56,58-62. 
 
Many impactful ideal observer models developed in recent years are not image-computable43,63-

67. The weakness of these models is that they do not explicitly specify the stimulus encoding 
process, and therefore make assumptions about the information that stimuli provide about the 
task relevant variable (e.g. the likelihood function in the Bayesian framework). In other words, 
these models cannot predict directly from stimuli how stimulus variability will impact behavioral 
variability. Image-computable models are thus necessary to achieve the goal of understanding 
how vision works with real-world stimuli. The current work represents an important step in that 
direction. 
 
Impact on neuroscience 
Behavioral and neural responses both vary from trial to trial even when the value of the latent 
(e.g. speed) is held constant. In many classic neurophysiological experiments, stimulus 
variability is eliminated by design, and experimental distinctions are not made between the 
latent variable of interest (e.g. orientation) and the stimulus (e.g. an oriented Gabor) used to 
probe neural response. Such experiments are well suited for quantifying how different internal 
factors impact neural variability. Indeed, it has recently been shown that, under these 



conditions, neural variability can be partitioned into two internal factors: a Poisson point-process 
and system-wide gain fluctuations68. This approach provides an elegant account of a widely 
observed phenomenon (‘super-Poisson variability69-71) that had previously resisted rigorous 
explanation. However, the designs of these classic experiments are unsuitable for estimating 
the impact of stimulus variability on neural response. 
 
In the real world, behavioral variability is jointly driven by external and internal factors. Our 
results show that both factors place similar limits on performance. A full account of neural 
encoding and decoding must include a treatment of all significant sources of response 
variability. Partitioning the impact of realistic forms of stimulus variability from internal sources of 
neural variability will be an important next step for the field. 
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Methods 
Human observers 
Three observers participated in the experiment. All had normal or corrected-to-normal acuity.  
 
Equipment 
Stimuli were presented on a ViewSonic G220fb 40.2cm x 30.3cm cathode ray tube monitor with 
1280x1024pixel resolution, and a refresh rate of 60 Hz. At the at the 92.5 cm viewing distance, 
the monitor subtended a field of view of 24.5º x 18.6º of visual angle. The display was linearized 
over 8 bits of grey level. The maximum luminance was 74 cd/m2. The mean background grey 
level was set to 37 cd/m2. The observer’s head was stabilized with a chin-and-forehead rest.  
 
Stimuli: Detection experiment 
Target stimuli in the detection experiment consisted of static, vertically-oriented Gabor targets in 
cosine-phase (3cpd and 4.5cpd) with 1.5 octave bandwidths embedded in vertically-oriented 
(1D) dynamic Gaussian noise. Targets subtended 1 deg of visual angle for a duration of 250ms 
(15 frames at 60htz). Stimuli were windowed with a raised-cosine window in space and a flattop-
raised-cosine window in time, exactly the same as the image movies in the speed discrimination 
experiment. The RMS contrast of the target and the noise were varied independently according 
to the experimental design. To minimize target uncertainty, the target was presented to the 
subject, without noise every 10 trials.  
 
For the detection experiment, a bit-depth of greater than 8 bits is required to accurately measure 
contrast detection thresholds. We achieved a bit-depth of more than 10 bits using the LOBES 
video switcher72. The video switcher combines the blue channel and attenuated red channel 
outputs in the graphics card. Picking the right combination of blue and red channel outputs 
generates a precise gray-scale luminance signal.  
 
Procedure: Detection experiment 
Stimuli in the target detection experiment were presented using a two-interval forced choice 
(2IFC) procedure. On each trial, one interval contained a target plus noise, and the other 
interval contained noise only. The task was to select the interval containing the target. Feedback 
was provided. Psychometric functions were measured for each of four different noise contrasts 
(0.00, 0.05, 0.10, 0.20) using the method of constant stimuli, with five different target contrasts 
per condition. Each observer completed 3200 trials in this experiment (4 noise levels x 5 target 
contrasts per noise level x 80 trials per target x 2 target frequencies). Each block contained 50 
trials. To minimize observer uncertainty trials were blocked by stimulus and noise contrast. The 
target stimulus was also presented at the beginning of each block, and then again every 10 
trials, throughout the experiment.  
 
Stimuli: Speed discrimination experiment 
Natural image movies were created by texture-mapping randomly selected patches of calibrated 
natural image onto planar surfaces, and then moving the surfaces behind a stationary 1.0º 
aperture. The movies were then restricted to one dimension of space by vertically averaging 
each frame of the movie13. Each movie subtended 1 deg of visual angle. Movie duration was 
250ms (15 frames at 60htz). All stimuli were windowed with a raised-cosine window in space 
and a flattop-raised-cosine window in time. The transition regions at the beginning and end of 
the time window each consisted of four frames; the flattop of the window in time consisted of 
seven frames. Contrast was computed under the space-time window. To prevent aliasing, 
stimuli were low-pass filtered in space and time before presentation (Gaussian filter in frequency 
domain with  

σ space =4cpd,  σ time =30htz). No aliasing was visible. 



All stimuli were set to have the same mean luminance as the background and had a fixed root-
mean-squared (RMS) contrast of 0.14 (equivalent to 0.20 Michelson contrast for sinewave 
stimuli), the modal contrast of the stimulus ensemble. The RMS contrast is given by  
 

   

CRMS =
c2 x( )w x( )

x
∑

w x( )
x
∑         (5) 

where  
c x( )  is a Weber contrast image movie, 

w x( )  is the window, and    x = x, y,t{ }  is a vector 
of space-time positions. Stimuli were contrast fixed because contrast is known to effect speed 
percepts and our focus was on how differences in Weber contrast patterns between stimuli 
impact performance rather than on differences in overall contrast impact performance, which 
have already been intensively studied42,43. 
 
Procedure: Speed discrimination experiment 
For the speed discrimination task, data was collected using a 2IFC procedure. On each trial, a 
standard and a comparison image movie were presented in pseudo-random order (see below). 
The task was to choose the interval with the movie having the faster speed. Human observers 
indicated their choice via a key press. The key press also initiated the next trial. Feedback was 
given. A high tone indicated a correct response; a low tone indicated an incorrect response. 
Experimental sessions were blocked by absolute standard speed. In the same block, for 
example, data was collected at the -5 and +5 deg/sec standard speeds. Movies always drifted in 
the same direction within a trial, but directions were mixed within a block. An equal number of 
left- and right-drifting movies were presented in the same block to reduce the potential effects of 
adaptation.  
 
In each pass of the experiment (see below), psychometric data were measured for each of 10 
standard speeds (+5, +4, +3, +2, +1) using the method of constant stimuli, with seven 
comparison speeds per function. For each standard, each of the seven comparison speeds was 
presented 50 times. Thus, on each pass, each observer completed 3,500 trials (2 directions x 5 
standard speeds x 7 comparison speeds x 50 trials).  
 
The exact same naturalistic movie was never presented twice within a pass of the experiment. 
Rather, movies were randomly sampled without replacement from a test set of 1,000 naturalistic 
movies at each speed. For each standard speed, 350 ‘standard speed movies’ were randomly 
selected. Similarly, for each of the seven comparison speeds corresponding to that standard, 50 
‘comparison speed movies’ were randomly selected. Standard and comparison speed movies 
were then randomly paired together. This stimulus selection procedure was used to ensure that 
the stimuli used in the psychophysical experiment had approximately the same statistical 
variation as the stimuli that were used to train and test the ideal observer model. Assuming the 
stimulus sets are representative and sufficiently large, the stimuli presented in the experiment 
are likely to be representative of natural signals.  
 
Ideal observer for speed estimation 
As signals proceed through the visual system, neural states become more selective for 
properties of the environment, and more invariant to irrelevant features of the retinal images. 
The ideal observer for speed estimation computes the Bayes’ optimal speed estimate from the 
posterior probability distribution over speed    p X | R( )  given the responses  R  of a small 
population of space-time receptive fields to a stimulus13. Given the constraints imposed by 



natural stimulus variability, measurement noise, and the early visual system, the space-time 
receptive fields and the subsequent computations for decoding the speed must be optimal in 
order for the estimates to be optimal (Fig. S3A). The most useful stimulus features and the 
computations that optimally pool them are jointly dictated by the task and the properties of 
natural stimuli. The receptive fields that encode the most optimal stimulus features for the task 
are determined via a recently developed technique called Accuracy Maximization Analysis18,29,30 
(AMA). The optimal computations for pooling the responses of the receptive fields are specified 
by how the receptive field responses are distributed (Fig. S4B). The conditional receptive field 
responses    p R | Xk( ) = gauss R;0,Σk( )  are jointly Gaussian and mean zero13,18 after response 
normalization. For any observed response  R , the computations that specify the likelihood 

   L Xu;R( ) = p R | Xu( )  that an observed response was elicited by a stimulus moving with speed 

 Xu  is obtained by evaluating the response in the response distribution corresponding to that 
speed. The responses must therefore be pooled in a weighted quadratic sum, with weights that 
are given by simple functions of the covariance matrices13. A neuron that performs these 
quadratic computations outputs a response 

   
Ru

L ∝ exp Qu R( )⎡⎣ ⎤⎦ = L Xu;R( )  that is proportional to 

the likelihood that a stimulus moving at speed  Xu  elicited the response  R . Following response 
normalization26-28, the likelihood neurons instantiate an energy-model-like hierarchical LNLN 
(linear, non-linear, etc.) cascade2,18. Thus, the computations that yield likelihood neurons can be 
thought of as a computational recipe, grounded in natural image and scene statistics, for how to 
optimally construct selective invariant speed-tuned neurons (Fig. S3D). 
 
To obtain the posterior probability of each speed, the likelihood must be weighted by the prior 

 p Xu( )  and normalized by the weighted sum of likelihoods    L Xv ;R( ) p Xv( )v∑ . Finally, the 
optimal estimate must be ‘read out’ from the posterior probability distribution. In the case of the 
0,1 cost function (i.e. L0 norm) the optimal estimate 

   
X̂ ideal = argmax

X
p X | R( )  is the posterior max 

(Fig. S3C). If the prior probability distribution is flat, which it is in the training and test sets, the 
optimal estimate is the latent variable value that corresponds to the maximum of the likelihood 
function (i.e. the max of the likelihood neuron population response; Fig. 3EF).  
 
Ideal, degraded, and human decision variables 
The ideal decision variable for the task of speed discrimination is obtained by the subtracting 
optimal the speed estimates corresponding to the comparison and standard stimuli 

 

  Dideal = X̂ ideal
cmp − X̂ ideal

std         (6) 
 
If the decision variable is greater than zero, the ideal observer responds that the comparison 
stimulus was faster. If the decision variable is less than zero, the ideal observer responds that 
the comparison stimulus was slower. Degraded observer decision variables are similarly 
obtained, except that the degraded observer estimates are obtained by reading out the 
responses of suboptimal receptive fields (Fig. S10). 
 
The human decision variable is a noisy version of the ideal decision variable, under the 
hypothesis that human inefficiency is due only to internal noise. Specifically, 
 

 Dhuman = Dideal +W          (7) 



where 
  
W ~ N 0,2σ I

2( )  is a sample of zero mean Gaussian noise, which corresponds to adding 

noise with variance   σ I
2  to the comparison and standard stimulus speed estimates. 

 
Double pass experiment 
A double pass experiment requires that each observer performs all (or a subset) of the unique 
trials in an experiment twice. In our experiment, each trial was uniquely identified by its standard 
and comparison movies. An observer completed the first pass by completing each unique trial 
once over 20 blocks consisting of 175 trials each. The standard speed was always constant 
within a block. Blocks were counterbalanced. The observer completed the second pass by 
completing each unique trial again over another 10 blocks. Before collecting data in the main 
experiment, each human observer completed multiple practice sessions to ensure that 
perceptual learning had stabilized. Analysis of the practice data showed no significant learning 
effects. Stimuli presented in practice sessions were not presented in the main experiment.  
 
Estimating decision variable correlation 
Human decision variable correlation is estimated via maximum likelihood from the pattern of 
human response agreement in the double-pass experiment. The log-likelihood of the double-
pass response data is given by  
 

  
θ̂ = argmax

θ
LL          (8) 

 
where θ  is a vector of model parameters describing decision variable distribution and observer 
criteria across both passes of the double pass experiment. The log-likelihood of the double-pass 
response data is given by 
 

  LL = N −− ln p−− θ( ) + N −+ ln p−+ θ( ) + N +− ln p+− θ( ) + N ++ ln p++ θ( )   (9) 
 
where  N −−  ,  N −+  ,  N +−  ,  N ++  are the number of sampled decision variables (i.e. responses) in 
the lower left, upper left, lower right, and upper right quadrants of the response space (see Figs. 
4B, S6B-D). The likelihoods of observing those samples are given by 

   
p−− = gauss D;u,Σ( )

−∞

c2∫−∞

c1∫        (10a) 

   
p−+ = gauss D;u,Σ( )

c2

∞

∫−∞

c1∫        (10b) 

   
p+− = gauss D;u,Σ( )

−∞

c2∫c1

∞

∫         (10c) 

   
p++ = gauss D;u,Σ( )

c2

∞

∫c1

∞

∫         (10d) 

where  D  is the joint decision variable across passes with mean  u  and covariance Σ  and   c1  

and   c2  are the observer criteria on passes one and two. The mean decision variable values are 
set equal to the speed difference 

  µ1 = µ2 = Xcmp − Xstd  between the standard and comparison 
stimuli in each condition.  
 
 



In practice, and without loss of generality, we estimate the decision variable correlation using 
normalized decision variables  Z . The parameter vector for maximizing the likelihood of the 
normalized decision variables is 

  
θ = ρ*,µ1

*,µ2
*,c1

*,c2
*{ }  where  *  indicates that the parameter is 

associated with the normalized variable. The integrals in Eq. 10a-d can be equivalently 
expressed with limits of integration   c

* = c σ human  and integrand 
   
gauss Z;Mu,MΣMT( )  with 

normalized mean and normalized covariance 
 

    
Mu =

µ1 σ human

µ1
*

! "# $#
µ2 σ human

µ2
*

! "# $#⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

       (11a) 

   

MΣMT =
1 ρ*

ρ* 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
         (11b) 

where the normalizing matrix is 

   

M =
1 σ H 0

0 1 σ H

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. Normalizing the variables has the 

practical advantage that it converts the covariance matrix to a correlation matrix, so that it can 
be fully characterized with a single parameter: decision variable correlation. It also sets the 
normalized means equal to  ′d . We fix the normalized means   µ1

* = µ2
* = ′dhuman  to the human 

sensitivity measured in the discrimination experiment (c.f. Fig. 4). We also fix the normalized 
criteria to   c1

* = c2
* = 0.0 , which is justified by the data (Fig. S4). These choices reduce the number 

of parameters to be estimated from five to one.  
 
Efficiency and early noise  
The approximate equality in Eq. 1 is useful for developing intuitions about the relationship 
between efficiency and decision variable correlation. But the approximate equality in Eq. 1 
assumes that the impact of early noise on the ideal observer decision variable is negligible. The 
exact expression for efficiency is given by  
 

  
η =

σ ideal
2

σ human
2 =

σ E
2 +σ I ,early

2

σ human
2         (12) 

 
where σ I ,early

2 	is the variance in the decision variable due to early noise. The variance in the 

decision variable due to early noise is distinct from early noise itself, which is defined in the 
domain of the image pixels instead of the decision variable. This is analogous to how the 
stimulus-driven variance   σ E

2  in the decision variable is distinct from stimulus variability. 
Stimulus variability, like early noise, is defined in domain of the image pixels and is non-zero in 
any set of non-identical stimuli having the same value of the latent variable. We computed 
efficiency using the exact expression in Eq. 12 instead of the approximate equality in Eq. 1 and 
found that, for our estimated values of early noise, both expressions produce similar estimates 
of efficiency (Fig. S2).   
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Figure S1. Threshold contrast power (i.e. equivalent input noise) for both targets and all three human observers 
observers. Equivalent input noise, expressed as percent contrast in the retinal image, is 2.5%, 2.3%, and 2.9% for 
each observer, respectively. The knee of each function (arrow) indicates the contrast power of the pixel noise 
required to double the threshold associated with zero pixel noise. Thus, the equivalent input noise bounds the amount 
of early noise in the system. 
 
Estimating early noise 
In target detection tasks, in which a known target must be detected in noise, the square of the 
detection threshold increases linearly with the stimulus noise power7. This fact can be leveraged 
to estimate the internal noise that limits detection performance. Stimulus noise (i.e. pixel noise) 
is under experimental control. Internal noise is not. Both noise types influence target detection 
thresholds. Target contrast power at threshold is a function of stimulus noise 

  
CT

2 σ pix( )∝σ pix
2 +σ internal

2  and is proportional to the sum of pixel and internal noise variances. The 

constant of proportionality depends on the target. Strong inferences can be made about the 
amount of internal noise from the psychophysical data, by assuming that internal noise is fixed. 
When pixel and internal noise have equal variance, for example, the squared detection 
threshold will be twice what it is when pixel noise is zero: 

  
CT

2 σ pix =σ internal( ) = 2CT
2 σ pix = 0( ) . The 

internal noise limiting performance in a detection experiment can therefore be estimated from 
the pattern of detection thresholds. The noise that limits detection performance could be early 
(e.g. at the level of the retinal image), late (e.g. at the level of the decision variable), or some 
combination of both. The detection thresholds therefore cannot be used to determine the exact 
amount of early noise. Rather, the detection thresholds place an upper bound on the amount of 
early noise in each human observer.   
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Figure S2. The impact of early noise on ideal observer performance and human efficiency. A Efficiency in speed 
discrimination for each human observer (symbols) as a function of the amount of early noise modeled in the ideal 
observer. If early noise is negligible, efficiency is given by   η = σ E

2 σ human
2 . If early noise is non-negligible, efficiency 

is given by   η =σ ideal
2 /σ human

2  the ratio of the variances of the ideal and human decision variables. The estimate of 
human efficiency increases linearly with the amount of early noise because increasing the variance of early noise 
increases the numerator in the expression for efficiency. B Same data as A, but on log-log axes. Given the upper 
bound established by the target detection experiment, the impact of early noise on estimates of human efficiency 
cannot be large. Throughout the main text, we used an estimate of efficiency that assumes early is at this upper 
bound (large symbols & solid horizontal lines). If one assumes no early noise (which is logically possible but not 
biologically plausible), the estimate of efficiency is given by the y-intercept of each curve. The red brackets and 
shaded areas represent all possible efficiencies consistent with these upper and lower bounds. The true value of 
efficiency is most likely somewhere in between these maximum and minimum values. C Predicted decision variable 
correlation for each human observer given the uncertainty about human efficiency. The maximum (solid line) and 
minimum (dashed line) predicted decision variable correlations correspond to ideal observers having the maximum 
and minimum amount of early noise. The predicted decision variable correlations differ by ~10% at maximum. 
 
Early noise and human efficiency 
Human efficiency is determined by comparing human and ideal observer sensitivities (i.e. 
variances; Eq. 1). Human variability is determined by stimulus-driven variability, early noise, and 
all other types of noise. Ideal variability is determined only by stimulus-driven variability and 
early noise. If variance of the ideal decision variable is misestimated, the estimate of human 
efficiency may be inaccurate (Eq. 2). The ideal observer is constrained by the same factors that 
are known to constrain the human visual system. If the early noise built into the ideal observer is 
larger than it should be (i.e. more than in the human), ideal variance will be larger than it should 
be and human efficiency will be over-estimated. If the early noise in the ideal observer is lower 
than it should be (i.e. less than in the human), ideal variance will be smaller than it should be 
and human efficiency will be underestimated. 
 
To determine how the amount of early noise impacts the estimate of efficiency, and thus its 
empirical relationship with decision variable correlation, we systematically varied the amount of 
early noise in the ideal observer. The amount of early noise ranged from zero, to the upper 
bound on early noise set by the target detection experiment, to values that exceeded the bound 
(Fig. S2AB). For each amount of early noise, we recomputed efficiency using the exact equality 
in Eq. 1 (also see Fig. 12) instead of the approximate equality in Eq. 1 used throughout the 
manuscript. The estimates of human efficiency with early noise set equal to zero and early noise 
set equal to the upper bound established by the detection experiment are within ~10% for each 
human observer (Fig. S2C). Thus, the true value of human efficiency is no more than 10% 
different than the values reported in the main text. 
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Figure S3. Ideal observer receptive fields, response distributions, estimates, and pooling. A Optimal space-time 
receptive fields (RFs) for speed estimation given the natural stimulus set and the constraints of the early visual 
system. Eight RFs capture essentially all of the task-relevant information. B Receptive field response distributions, 
conditioned on the speed of the image movie (colors). The joint response of the filters to each stimulus is given by 

  R = f T c + n( ) c + n  where  f  is the set of filters,  c  is the contrast stimulus, and  n  is a sample of early noise. 

Each symbol represents the joint response to an individual movie. Each response distribution is well described by a 
zero-mean Gaussian    p R | X

k
( ) = gauss R;0,Σ

k
( ) . Response distributions for other receptive field pairs are similarly 

distributed. The response variability within each color is due to natural stimulus variability; that is, it is the stimulus 
variability in the feature space defined by the optimal RFs. The covariance  Σu

 of the RF responses to movies having 

speed  X u  
dictate the optimal pooling weights   wu  

13 (see below). C Hypothetical neuron implementing optimal 
encoding and pooling. Each noisy, contrast-normalized stimulus is processed by the optimal RFs. The responses of 
these RFs are pooled in a weighted quadratic sum. The sum is then pushed through an exponential output non-
linearity to obtain the likelihood    R

L X
u

( ) = L X
u
;R( )  that the observed receptive field responses  R  were elicited by 

speed  X u
, the preferred speed of the neuron. The response of this hypothetical neuron represents the likelihood that 

a given stimulus had its preferred speed. The optimal pooling rules thus represent a LNLN (linear, non-linear, etc.) 
cascade. D Speed tuning curves of hypothetical neurons implementing optimal encoding and pooling, whose 
responses represent the likelihood of each speed given a stimulus. The speed-tuning curve  R

L X
u

( )  is the average 
likelihood across stimuli at each of many different speeds. Shaded regions indicate +1SD confidence intervals on 
response. Response variability is due primarily to natural stimulus variability. The optimal computations convert the 
tuning curves of the space-time RFs (A), which individually provide poor information about speed, into the speed 
tuning curves of the likelihood neurons, which individually provide excellent information about speed. E An arbitrary 

stimulus creates a population response   R L  over hypothetical speed-tuned neurons. Optimal decoding yields the 
optimal estimate. F Ideal observer estimates. The optimal estimate is read out from the population of hypothetical 
speed-tuned neurons in E, and is equivalent to reading out the posterior probability distribution    p X | R( )  over speed. 

Estimate variability (histogram) is dominated by stimulus-driven variability ( σ E
; see Figs. 1A, 4B). 

wii,u

wij,u

wjj,u

c
fi
fi+j
fj

cnrm
Ri

Rj

RL
u

2

2

Normalization Optimal encoding & pooling

const

÷
c+n

C

Ri+j
2

Early
noise

n

Contrast
Normalization

A B

RF1 Response

RF
2 

Re
sp

on
se

+8
º/s

-8º/s
Spee

d  
f1 f2

f5 f6

f3

f7 f8

Ti
m

e 
(m

s)

Position (arcmin)

f4

Speed (deg/sec)

Es
tim

at
ed

 S
pe

ed
 (d

eg
/se

c) Ideal observer
performance

-8 -4 0 4 8
-8

-4

0

4

8

 

 

X̂ = argmax
X

p X |R( )
MAP decoding

7

6

4

Es
tim

at
ed

 S
pe

ed
 (d

eg
/se

c)

5

3

F

+

MAP

Ri

Ri+j

Rj

early

L N L N

E

Re
sp

on
se

Re
sp

on
se

D

-6 -4 -2 0 2 4 6 8
Speed (deg/sec)

-8

-6 -4 -2 0 2 4 6 8
Preferred Speed (deg/sec)

-8

RL Optimal decoding

Speed-tuning curves



 
Figure S4. Human criteria and the estimation of d-prime in the speed discrimination experiment. A Decision variable 
distributions with optimal and non-optimal criteria. The decision variable   D = X̂

2
− X̂

1
 is given by the differences 

between the speed estimates on the two intervals of each trial. Assuming the comparison speed is greater than the 

standard speed 
 X cmp

> X
std

, the ‘signal’ and ‘noise’ distributions--  p D | X
2
= X

cmp( )  and   p D | X
1
= X

cmp( ) --correspond 

to when the comparison is in the second and first interval, respectively. When the decision variable exceeds the value 
of the criterion, the observer chooses interval two as faster. If the criterion is optimally placed (i.e.  c =0), the 
proportion of hits and correct rejections  p HT( ) = p CR( )  equal one another. If the criterion is non-optimally placed 

(i.e.  c ≠ 0.0), the proportion of hits and correct rejections do not equal one another  p HT( ) ≠ p CR( ) . B Estimating d-
prime with and without the assumption that the criterion equals zero. The expression 

  
′d̂ = Φ−1 p HT( )( ) + Φ−1 p CR( )( )⎡⎣ ⎤⎦ 2  provides an estimate of d-prime that makes no assumption about the 

location of the criterion (dashed lines). The expression 
  
′d̂c=0 = 2Φ−1 0.5 p HT( ) + p CR( )⎡⎣ ⎤⎦( )  

provides an estimate of d-

prime assuming that the criterion equals zero (solid curves). For simplicity, the latter expression is used throughout 
the main text. If the criterion is non-zero, but   ′d̂

c=0
 is used, d-prime is systematically underestimated. However, for 

small criterion shifts, estimation errors are small (shaded regions). C Criteria of human observers as a function of the 
comparison index for each standard speed (colors). Each comparison index corresponds to a comparison speed, 
three slower and three faster than the standard. Comparison indices are plotted rather than comparison speeds 
because comparison speeds and how much they differ from the standard speed change with the standard speed. 
Thirty-five criteria are computed for each observer (5 standard x 7 comparison speeds), averaged across both passes 
in the experiment. Shaded regions show criteria values for which the d-prime estimation error is greater than 2%, 
10%, 25%, and 50%, respectively. D Observer criteria on each pass of the experiment for the three observers 
(symbols). Histograms show the distribution of criteria in each pass. Twice the standard deviation of the criteria  σ c

 
in each pass of the experiment equals the width of the 2% error region, and is half the width of the 10% error region. 
E D-prime computed two ways. D-prime estimated with the assumption that observer criteria equaled zero vs. d-
prime estimated without that assumption. The differences are negligible. The approach taken in the main text is 
therefore justified. 
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Figure S5. Human sensitivity, psychometric functions, and efficiency vs. the ideal observer. A Human vs. ideal 
observer sensitivity (d-prime) for all three human observers. Human and ideal sensitivities are linearly related by the 
square root of efficiency. B Human psychometric functions (symbols) and degraded ideal observer fits (curves). The 
degraded ideal observer is fit to each human observer with one free parameter: efficiency. C Human efficiencies are 
0.43, 0.41, and 0.17. D Human efficiency as a function of speed. Efficiency for each human observer is approximately 
constant with speed.  
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Figure S6. The psychometric function, decision variable correlation, and response agreement. A The psychometric 
function plots proportion comparison chosen vs. the decision variable. B Decision variable correlation when 
proportion comparison chosen is greater than 50%, C equals 50%, D and is less than 50%. Ellipses representing 
distributions with decision variable correlations of 0.5 (solid ellipse) and 0.0 (dashed circle) are shown. Response 
agreements occur when the decision variable is correct on both passes (upper right quadrant) or incorrect on both 
passes (lower left quadrant). Thus, increased correlation is associated with increased agreement. Note that we depict 
a single decision variable distribution rather than the two that are standard in signal detection theory. This choice is 
justified if observer criterion is optimally placed; that is, when the criterion is optimally placed, proportion hits equals 
proportion correct rejections. In our dataset, non-optimal criterion placement is negligible (see Fig. S4). E Proportion 
response agreement vs. proportion comparison chosen against predictions for decision variable correlations of 0.5 
(solid curve) and 0.0 (dashed curve).  
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Figure S7. Proportion response agreement vs. proportion comparison chosen in all conditions, for each human 
observer. Top, middle, and bottom rows show proportion response agreement vs. proportion comparison chosen for 
human observers S1, S2, and S3, respectively for each of five standard speeds (1-5 deg/sec; columns). Error bars 
indicate 68% bootstrapped confidence intervals on the agreement data. Shaded regions represent prediction 
uncertainty (68% confidence intervals) from 10000 Monte Carlo simulations given the uncertainty in the estimate of 
efficiency. 
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Figure S8. Negative log-likelihood as a function of fitted decision variable correlation for each human observer. The 
vertical line represents the efficiency-predicted value of decision variable correlation (zero free parameters), under 
the assumption that all inefficiency is due to internal noise.  
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Figure S9. Relationship between suboptimal receptive fields and stimulus-driven variability in degraded observers. A 
Optimal receptive fields (top; also see Fig. S3) and suboptimal receptive fields from the degraded observer (bottom); 
only the first two receptive fields of each observer are shown. To obtain a suboptimal receptive field with a particular 
receptive field correlation, we added fixed samples of Gaussian white noise to the corresponding optimal receptive 

field. The standard deviation of the corrupting noise is given by    
σ

corrupt

2 = 1 / ρ
f

2( ) − 1( ) N  where  N is the number of 

pixels defining each receptive field. B Impact of suboptimal receptive fields on the conditional response distributions 

   p R | X( ) . As the receptive fields become more suboptimal, the response distributions (colored ellipses) more poorly 
distinguish different values of the latent variable. C Effect of suboptimal receptive fields on degraded observer speed 
estimates for movies drifting at one speed (3 deg/sec). As receptive field correlation decreases, the variance of the 
estimates increases, because informative stimulus features are not encoded and uninformative features are. D 
Standard deviation of degraded ideal observer speed estimates for all speeds, for a range of receptive field 
correlations (gray levels). Standard deviation increases exponentially with speed, which means that the standard 

deviations are fit by a line in log-linear space 
  
σ E = exp mX + b( ) = exp b( )exp mX( )  where  b  is the y-intercept and  m  is 

the slope. Note that the intercept  b ρ( )  depends on receptive field correlation whereas the slope does not. E The 
ratio of standard deviations for the degraded vs. the ideal observer estimates, assuming that the degraded observer 
has no late internal noise. The proportional increase is defined by 

  
α = exp b ρ( )( ) / exp b 1( )( )  where   

b 1( )  is the y-

intercept in D for the optimal receptive fields. Symbols plot the proportional increase from the simulations. The curve 
shows the expected proportional increase assuming that the scale factor is given by  α = 1 / ρ 2 , the relationship 
described in the main text. The stimulus-driven variance of the speed estimates is scaled by the squared inverse of 
receptive field correlation.  
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Figure S10. Decision variable correlation vs. efficiency for degraded observers. A Relationship between decision 
variable correlation and efficiency for degraded observers different combinations of fixed sub-optimal computations 
and internal noise (colors). Points represent mean decision variable correlation and mean efficiency from 100 Monte 
Carlo simulations of each degraded observer. White points correspond to the original ideal observer. Colored points 
correspond to degraded observers with receptive field correlations less than 1.0. With suboptimal computations, the 
decision variable correlation is proportional to efficiency with a constant of proportionality   α ≅ 1 / ρf

2  that is 
approximately equal to the squared inverse of receptive field correlation: for example, if receptive field correlation is 
0.5, decision variable correlation is 4x higher than efficiency. B The relationship holds for many different combinations 
of standard and comparison speeds (subpanels; columns and rows represent different standard speeds and 
comparison speed increments, respectively; all standard and comparison speeds yield similar results.). To simulate 
performance for a given degraded observer we first randomly selected 1000 pairs of stimuli, each pair consisting of a 
standard stimulus and a comparison stimulus. We then generated speed estimates for each stimulus in the pair, 
subtracted the estimates to obtain a difference signal (  X̂ cmp

− X̂
std

), and added Gaussian noise to each difference 

signal to obtain the decision variable. The observer chose the comparison as faster if the decision variable exceeded 
zero. Efficiency and decision variable correlation were estimated from the responses of the degraded ideal observer 
using the same methods used for the human observers. Curves show decision variable correlation as a function of 
efficiency for different receptive field correlations. Shaded regions represent standard error of the decision variable 
correlation calculated from 100 Monte Carlo simulations. Averaging the results across conditions is therefore justified. 
C The relationship between decision variable correlation and efficiency (i.e.   ρ = η / ρ

f

2  ) can be solved analytically for 
the task of target detection in Gaussian white noise (see Supplement). Interestingly, the same relationship between 
decision variable correlation and efficiency holds for target detection in white noise and for speed discrimination with 
naturalistic image movies, two tasks with very different computational requirements. 
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Figure S11. Effects of reducing stimulus variability. First and third columns show psychometric functions for speed 
discrimination for each human observer with drifting sinewave stimuli (gray curve) and naturalistic stimuli (black 
curve), with 1.0 deg/sec and 2.0 deg/sec standard speeds. Speed can be discriminated more precisely with sinewave 
stimuli than with naturalistic stimuli. Second and fourth columns show response agreement vs. proportion comparison 
chosen with sinewave stimuli (gray) and natural stimuli (black), for each human observer.  
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Efficiency vs. decision variable correlation for target detection in noise 
The ideal observer for detecting a known target in Gaussian white noise requires a single 
receptive field that is shaped exactly like the target. If a human observer is modeled to use the 
exact same receptive field as the ideal observer but has a source of internal noise, the 
relationship between human efficiency and decision variable correlation can be determined 
analytically. If a human observer is modeled as using a suboptimal receptive field in addition to 
internal noise, decision variable correlation is proportional to efficiency scaled by the square of 
the receptive field correlation. Thus, even though target detection in Gaussian white noise is a 
significantly less complicated computational task than speed discrimination with natural images, 
the same equations relate efficiency and decision variable correlation. 
 
Proof 
Ideal observer (M) and human (H) receptive fields 
 

  fM ∝T

           

(S1) 

  fH

 

 
 
Model and human decision variables  
 

   
RM = fM

T s+ ε pix( )        = fM
T s+ fM

T ε pix        (S2a)

   
RH = fH

T s+ ε pix + ε ret( ) = fH
T s+ fH

Tε pix + fH
Tε ret       (S2b) 

 
where  s  is an arbitrary stimulus, 

  
ε pix ~ N 0,σ pix

2( )  is pixel noise added to the stimulus, and 

  
ε ret ~ N 0,σ ret

2( )  is retinal noise internal to the human observer. 

 
Sensitivity (i.e. d-prime) is quantified by  
  
   ′d = Δ /σ           (S3) 
 
where Δ  is the mean decision variable when the signal plus noise is presented and σ  is the 
standard deviation of the decision variable. (The mean decision variable equals 0.0 when only 
noise is presented.) 
 
The means of the model and human decision variable are given by 
 

  ΔM = fM
T s

 

           (S4a)

 
  ΔH = fH

T s           (S4b) 
 
The standard deviations of the model and human decision variable are given by 
 

   
σ M = σ pix

2 fM
T fM           (S5a)

 

 

   
σ H = σ pix

2 fH
T fH +σ ret

2 fH
T fH          (S5b) 

 
Human efficiency is the squared ratio of human and ideal sensitivity 



 
  
η =

′dH

′dM

⎛
⎝⎜

⎞
⎠⎟

2

=
ΔH /σ H

ΔM /σ M

⎛
⎝⎜

⎞
⎠⎟

2

=
ΔH

2 σ M
2

σ H
2 ΔM

2
       (S6) 

 
Plugging Eqs. 4 and 5 into Eq. 6 yields 
 

 

   

η =
fH

T s( ) fH
T s( )σ pix

2 fM
T fM

σ pix
2 fH

T fH( ) +σ ret
2 fH

T fH( )( ) fM
T s( ) fM

T s( )          (S7)

   
Grouping terms and simplifying 
 

   
η =

fH
T s( ) fH

T s( )fM
T fM

fM
T s( ) fM

T s( )fH
T fH

σ pix
2

σ pix
2 +σ ret

2

⎛

⎝
⎜

⎞

⎠
⎟         (S8)  

 
Assuming, as is typical in a target detection experiment, that the noiseless target stimulus is 
proportional to the target stimulus   s = afM  yields 
 

 

   
η =

fM
T fH( ) fM

T fH( )
fM

T fM( ) fH
T fH( )

σ pix
2

σ pix
2 +σ ret

2

⎛

⎝
⎜

⎞

⎠
⎟           (S9) 

 
The human and ideal receptive field correlation (i.e. cosine similarity) can be used to quantify 
the optimality or sub-optimality of the human computations  
 

   
ρf fM ,fH( ) = fM

T fH

fM fH

=
fM

T fH

fM
T fM fH

T fH

        (S10) 

 
Human efficiency can be expressed in terms of receptive field correlation, internal noise, and 
external noise by plugging the square of Eq. S10 into Eq. S9  
 

 
    
η = ρf

2 fM ,fH( )
suboptimal

computations! "# $# σ pix
2

σ pix
2 +σ ret

2

⎛

⎝
⎜

⎞

⎠
⎟

internal noise! "## $##

        (S11) 

 
Thus, sources of inefficiency in target detection can be partitioned into fixed sub-optimal 
computations and internal noise. Note that if the human uses the optimal computations (i.e. 
uses the same receptive field   fH = fM  as the ideal observer) receptive field correlation equals 
1.0 and Eq. S11 reduces to 

 

   

η =
σ pix

2

σ ideal
2

!

σ pix
2 +σ ret

2

σ human
2

" #$ %$
          (S12) 



Substituting   σ E
2 =σ pix

2  for the variance of the ideal decision variable and   σ E
2 +σ I

2 =σ pix
2 +σ ret

2  for 
the variance of the human decision variable into Eq. S12 yields the expression in Eq. 1 in the 
main text.  
 
Next, we solve for human decision variable correlation in a double-pass target detection 
experiment. In a double pass experiment, the sample of external noise 

 
ε pix  is identical (i.e. 

perfectly correlated) on repeated presentations of the same trial. From the definition of 
correlation, human decision variable correlation is given by 
 

 

  
ρ =

cov RH , RH( )
σ Hσ H

=
E RH

2⎡⎣ ⎤⎦ − E RH⎡⎣ ⎤⎦
2

σ H
2          (S13) 

 
Plugging Eqs. S2b and S5b into Eq. S13, expanding, canceling terms w. independent noise 
across passes, and finding the variance of terms with correlated noise across passes yields 
 

   
ρ =

σ pix
2 fH

T fH

σ pix
2 fH

T fH +σ ret
2 fH

T fH

         (S14) 

 
Assuming that the human uses the same receptive field across both passes of a double pass 
target detection experiment 
 

 
  
ρ =

σ pix
2

σ pix
2 +σ ret

2            (S15) 

 
Substituting Eq. S15 into Eq. S11 and rearranging yields human decision variable correlation in 
terms of efficiency and receptive field correlation 
 

  ρ =η / ρf
2              (S16) 

 
which is the same expression as Eq. 4 in the main text. Thus, decision variable correlation 
equals efficiency only when noise is the sole source of inefficiency, under the assumption that 
the human uses the same receptive field on both passes.  
 
The expressions relating efficiency and decision variable correlation for the task of target 
detection in Gaussian white noise which we have just proved analytically, and in speed 
discrimination with naturalistic image movies which we have earlier shown via simulation (see 
Fig. S10), are identical. 
  




