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Determining the features of natural stimuli that are most useful for specific natural tasks is critical for understanding
perceptual systems. A new approach is described that involves finding the optimal encoder for the natural task of interest,
given a relatively small population of noisy “neurons” between the encoder and decoder. The optimal encoder, which
necessarily specifies the most useful features, is found by maximizing accuracy in the natural task, where the decoder is the
Bayesian ideal observer operating on the population responses. The approach is illustrated for a patch identification task,
where the goal is to identify patches of natural image, and for a foreground identification task, where the goal is to identify
which side of a natural surface boundary belongs to the foreground object. The optimal features (receptive fields) are
intuitive and perform well in the two tasks. The approach also provides insight into general principles of neural encoding and
decoding.
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Introduction

Evolution tends to select perceptual systems that
encode, or learn to encode, those properties of the
environment that are relevant for successful performance
of the organism’s natural tasks or behaviors. Thus, the
systematic study of a perceptual system requires charac-
terizing the task-relevant properties of environments and
sensory stimuli, as well as determining how those proper-
ties are exploited by the nervous system to perform
natural tasks (for reviews see Geisler, 2008; Simoncelli &
Olshausen, 2001).
The crucial first step of this enterprise, characterizing

natural stimuli, involves measuring and analyzing natural
scene statistics. There have been two general approaches,
which have both been productive. One involves collecting
natural stimuli, determining some of their statistical
structure using mathematical tools such as principle
components analysis, independent components analysis
and information theory, and then interpreting that
structure with respect to the principle of efficient coding
(Bell & Sejnowski, 1997; Laughlin, 1981; Lee, Pedersen,
& Mumford, 2003; Olshausen & Field, 1997; Ruderman
& Bialek, 1994; Simoncelli & Olshausen, 2001; Smith &
Lewicki, 2006; van Hateren & van der Schaaf, 1998). The
other approach is similar but focuses on specific natural
tasks by attempting to characterize the statistical relation-

ship between specific properties of sensory stimuli and
specific environmental (scene) properties relevant for
efficient performance in a given task (Brunswik &
Kamiya, 1953; Elder & Goldberg, 2002; Fowlkes, Martin,
& Malik, 2007; Geisler, 2008; Geisler & Perry, 2009;
Geisler, Perry, Super, & Gallogly, 2001; Konishi, Yuille,
Coughlan, & Zhu, 2003; Martin, Fowlkes, & Malik, 2004;
Motoyoshi, Nishida1, Sharan, & Adelson, 2007; Ullman,
2007; Ullman, Vidal-Naquet, & Sali, 2002). A weakness
of the former approach is that it provides little insight into
which specific statistical properties of natural stimuli are
relevant to which specific natural tasks; in fact, some
stimulus properties may not be relevant to any task
performed by a given organism. A weakness of the latter
approach has been that the analyzed stimulus properties
are often selected on the basis of intuition, historical
precedence, and trial-and-error, rather than on the basis of
a principled and unbiased procedure (but see Ullman
et al., 2002). Here we describe a principled and unbiased
procedure for determining the most relevant stimulus
properties for specific natural tasks and for quantifying the
usefulness of those properties.
The proposed analysis builds on previous approaches

for measuring natural scene statistics and on applications
of Bayesian ideal observer theory and information theory
to neural coding. The central idea is to determine the
optimal encoder for the natural task of interest, assuming a
small number of “neurons” (a limited channel) with given
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constraints between the encoder and its matched Bayesian
optimal decoder: The optimal encoder is the one that
yields the best performance when combined with its
matched optimal decoder (which generally will be differ-
ent for each candidate encoder). There are three reasons
for considering optimal encoding for a limited neural
channel. First, if the optimal encoder can be determined,
then the encoding properties of the small neural popula-
tion necessarily represent the most relevant stimulus
properties for the given task. Second, there are always
limitations in neural resources and the optimal encoder
shows how to best use those limited resources for the
given task. Third, in addition to providing a rigorous
characterization of the natural scene statistics for the
given task, determining the optimal encoder provides a
principled starting point for proposing and testing hypoth-
eses for the actual neural encoding and decoding.
Many natural tasks involve making categorical judg-

ments about the environment given the proximal stimuli
encoded by the sensory receptors (e.g., identifying
physical objects or materials and their locations in space
and time). This paper focuses on such identification tasks
where the goal is to maximize identification accuracy. In
this case, the output of the proposed analysis is a set of
optimal receptive fields that capture and hence represent
the stimulus properties most relevant for performing the
specific natural identification task.
In addition to incorporating the natural scene statistics,

the proposed analysis explicitly incorporates constraints
on the dynamic range and noise properties of the neurons
making up the limited channel between the encoder and
the decoder. Here, the neurons making up the limited
channel have a maximum response that is typical of
cortical neurons, and like cortical neurons, they have a
response variance proportional to the mean response.
After describing the proposed analysis in general terms,

it is illustrated by finding optimal linear receptive fields
for two natural identification tasks: an image-patch
identification task and a foreground identification task.

Methods

Accuracy maximization analysis (AMA)

In a given natural identification task the organism
receives a particular sensory stimulus and based upon
the responses of a neural population to the stimulus makes
a decision about which specific category of object is
present in the environment (Figure 1). To be concrete, we
represent the specific category of object by a vector 5 that
can take one of a discrete number of possible values,
indexed by the integer variable k, and we represent the
received stimulus by a vector s (e.g., a patch of image or
a sample of sound) that also can take one of a discrete

number of possible values, indexed by the pair of integer
variables (k, l), where l is the specific exemplar from
category k. Thus, the natural scene statistics for the
identification task can be represented by a joint probability
distribution, p0(k, l), and any given randomly sampled
stimulus in the task can be regarded as a random sample
(K, L) from this distribution. It is the task-relevant
structure of this unknown joint probability distribution
that we wish to characterize.
To characterize the structure of p0(k, l), we suppose

stimuli sampled from this distribution are encoded in
the responses of a population of q neurons. The
responses to a stimulus s(k, l) can be represented by a
random vector, Rq(k, l) = [R1(k, l),I, Rq(k, l)], and the
observer’s guess of the category (i.e., the observer’s
response) based on these random responses can be
represented by 5̂[Rq(k, l)]. The mean response functions,
rq(k, l) = [r1(k, l),I, rq(k, l)], describe the mapping
between the stimulus and the mean response of each
neuron in the population and can be regarded as the
encoding functions. For example, each encoding function
might be defined by a unique receptive field or tuning
function. The aim of AMA is to find encoding functions
that maximize identification performance in a specific
categorization task.
To find the optimal encoding functions, it is both

essential and useful to explicitly represent neural noise.
First, if the mean response functions are specified as real-
valued functions, then some noise must be included to
obtain meaningful answers (solutions degenerate if
responses have arbitrarily high precision because each
stimulus produces a unique number). Second, all real
systems include some form of noise; for example, even in
a perfect digital visual system the quantization of gray
level effectively introduces uniform noise within each
quantization step. Third, an explicit representation of the
neural noise allows one to investigate the effect of realistic
neural noise properties on optimal encoding. We assume
that the variability of each neuron (to repeated presenta-
tions of the same stimulus) is determined by a random
sample of neural noise Nq = [N1,I, Nq] that may be
correlated across neurons (Gawne & Richmond, 1993;
Zohary, Shadlen, & Newsome, 1994) and may depend on
the mean response of the neuron (e.g., in cortical neurons
the variance of the response is proportional to the mean
response, Geisler & Albrecht, 1997; Tolhurst, Movshon,
& Dean, 1983).
A complete description of an identification task must

include a specification of the costs and benefits (utility) of
different task outcomes. Here we consider tasks where the
utility of all errors is zero and the utility of all corrects is
one (i.e., the goal is to maximize accuracy), but it is
possible to generalize to arbitrary utility functions (see
Discussion).
The central question addressed here is this: Given a

natural identification task, and a set of constraints on the
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population responses, what is the optimal mapping
between the stimuli and the mean responses of the neurons
in the population? In other words, we wish to determine
the encoding functions, [r1(k, l),I, rq(k, l)], that max-
imize accuracy in the identification task. To do this, we
must consider the ideal observer whose input is the neural
population response. The decision rule of the ideal
observer is the optimal decoder. If the goal is to maximize
accuracy, then the ideal decision rule is to pick the
category that is most likely given the observed neural
population response (i.e., the category with the greatest
posterior probability):

Pickcategory i if p ijRq

� �
9 p jjRq

� �
for j m i: ð1Þ

The encoding functions that maximize the performance of
this ideal observer are the optimal encoding functions.
The direct procedure for determining the optimal

encoding functions would be to search the space of
possible encoding functions by simulating the perfor-
mance of the ideal observer for each set of candidate
functions. Unfortunately, this direct procedure is generally
impractical. The more practical heuristic approach taken
here (which we verify with Monte Carlo simulation) is to
consider the shape of the posterior probability distribution

across categories computed by the ideal observer. Con-
sider an arbitrary stimulus s(k, l). The posterior probability
distribution computed by the ideal observer from the
population response to this stimulus is p(iªRq(k, l)). This
posterior probability distribution varies randomly because
of the randomness of the neural population responses to
the same stimulus, and thus the ideal observer will be
accurate if this posterior probability distribution is on
average as close as possible to a probability distribution f(i)
that is 1 at the correct category k and is 0 elsewhere. A
principled measure of the difference between two proba-
bility distributions f(x) and g(x) is the relative entropy, D,
also known as the Kullback–Leibler divergence (Cover &
Thomas, 2006):

D ¼
X
x

f xð Þlog f ðxÞ
gðxÞ :

Relative entropy plays a special role in information theory
by providing a precise measure of the uncertainty differ-
ence (in bits) between two probability distributions. In our
case, the average relative entropy reduces to the simple
formula:

Dqðk; lÞ ¼ jE log p kjRqðk; lÞ
� �h i

: ð2Þ

Figure 1. Framework for characterizing natural scene statistics for specific identification tasks. The category of object in the environment is
represented by a vector 55(k), indexed by category number k. The proximal stimulus is represented by a vector s(k, l), indexed by
category number k and exemplar number l. Thus, a randomly sampled natural stimulus in the natural task can be regarded as random
sample (K, L) from an unknown joint probability distribution, p0(k, l). The proximal stimulus is encoded by a population of q neurons where
the mean response of the population to a particular stimulus s(k, l) is rq(k, l) = [r1(k, l),I, rq(k, l)], and the variability of each neuron’s
response (to repeated presentations of the same stimulus) is represented by an additive sample of noise Nq = [N1,I, Nq] whose variance
may depend upon the mean response and that may be correlated across neurons. The population response is optimally decoded into an
estimate 5̂5 of the object category in the environment (the distal stimulus). The goal of accuracy maximization analysis is to determine the
encoding functions [r1(k, l),I, rq(k, l)] that maximize accuracy in the identification task. (Bold letters represent vector quantities, capital
letters represent random variables.)
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In agreement with what one would expect of an
appropriate measure we note that Dq(k, l) decreases
toward zero monotonically as the posterior probability at
the correct category approaches 1.0. It follows intuitively
that the overall accuracy of the ideal observer will be
maximized when the average difference �Dq over all
possible stimuli is minimized, where

�Dq ¼ j
X
k;l

p
0
ðk; lÞE log p kjRqðk; lÞ

� �h i
: ð3Þ

An obstacle to directly minimizing Equation 3 is that the
expected log posterior probability can generally be
computed only by Monte Carlo simulation, which can
be prohibitively slow and noisy when searching a large
space of possible encoding functions. Therefore, an
approximation is needed. Here, we assume that the
average relative entropy, given a random response vector,
is approximately equal to the relative entropy, given the
average value of the response vector:

jE log p kjRqðk; lÞ
� �h i

; jlog p kjE Rqðk; lÞ
� �� �

¼ jlog p kjrqðk; lÞ
� �

: ð4Þ

There are surely better approximations of expected
relative entropy than Equation 4, but we show in the
examples that this approximation appears to be suffi-
ciently accurate for the present purpose of determining
optimal encoding functions.
Finally, note that Equation 3 can be regarded as the

mean value of the expected relative entropy over the prior
probability distribution of categories and stimuli, and thus
given a large enough training set of random samples (Ki, Li)
of natural stimuli, the optimal encoding functions can be
obtained by minimizing the sample mean:

�Dq ¼ j
1

n

Xn
i¼1

log p Kijrq Ki;Lið Þ
� �

: ð5Þ

Thus, a practical procedure for estimating optimal encod-
ing functions is to minimize Equation 5 over the space of
encoding functions, for a large number of random samples
of the natural stimuli that arise in the natural identification
task. Note that minimizing Equation 5 is equivalent to
maximizing the geometric mean of the posterior proba-
bility at the correct category across the training samples.
An obvious alternative is to maximize the arithmetic mean
(i.e., drop the logarithm from Equation 5). This behaves
similarly, but we have found slightly better convergence
behavior in some cases using the geometric mean. This

completes the general derivation of accuracy maximiza-
tion analysis.

Optimal linear receptive fields and Gaussian
neural noise

In any specific application of accuracy maximization
analysis the task and the procedure of selecting training
stimuli must be specified, and some constraint must be
placed on the family of possible neural encoding func-
tions. For the examples described here, the input stimuli
are normalized gray-scale image patches (12 � 12 pixels),
and the observer’s task is to indicate the category to which
the image patch belongs. In other words, the input
stimulus is given by

s k; lð Þ ¼ xðk; lÞj �xðk; lÞ
sdðk; lÞ ffiffiffiffiffiffiffiffiffiffiffi

npixels
p ; ð6Þ

where x(k, l) is the un-normalized image patch, �x(k, l) is
the mean gray level of the patch, sd(k, l) is standard
deviation gray level of the patch, and npixels is the number
of pixels in the patch.
The family of possible encoding functions is con-

strained in three ways: (a) we consider only linear
weighting functions (linear receptive fields), (b) the
response of each neuron cannot exceed a value of rmax,
and (c) the neural noise is independent Gaussian with
variance proportional to the mean response. The first two
constraints are implemented by the following equation for
the mean response of the tth neuron:

rtðk; lÞ ¼ rmaxsðk; lÞ I wt; ð7Þ

where wt is a vector of weights (normalized to a length of
1.0) that defines the 12 � 12 receptive field, and s(k, l) I wt

is the dot product of the stimulus with the receptive field.
Because the stimulus and receptive field (RF) are both
normalized to a vector length of 1.0, their maximum dot
product is 1.0 (when the receptive field matches the
stimulus) and hence the maximum possible response is
rmax. The third constraint is implemented by requiring that
the probability of response r from the tth neuron in the
population is given by:

p rjk; lð Þ ¼ 1ffiffiffiffiffiffi
2:

p
Atðk; lÞ

exp j
1

2

r j rtðk; lÞ½ �2
A2
t ðk; lÞ

" #
; ð8Þ

A2
t ðk; lÞ ¼ !jrtðk; lÞj þ A2

0; ð9Þ
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where ! is the Fano factor and A0
2 is the small baseline

variability.1 The dynamic range and noise parameters of
the neurons were set to the mean values for neurons in
monkey V1 reported in Geisler and Albrecht (1997), for
200ms (fixation-like) stimulus presentations: rmax = 5.7 spks,
! = 1.36, A0

2 = 0.23.
Under the above assumptions, and expanding p(kªrq(k, l))

into a recursive formula using Bayes’ rule (see Appendix A),
we have:

p kjrqðk; lÞ
� �

¼ 1

Z
p kjrqj1ðk; lÞ
� � 1

nk

Xnk
j¼1

1

Aqðk; jÞ

exp j
1

2

rqðk; lÞj rqðk; jÞ
� �2

Aqðk; jÞ2
" #

; ð10Þ

where nk is the number of training samples from category
k, p(kªr0(k, l)) = nk/n, n is the total number of training
stimuli, and Z is a normalization factor. In keeping with
the approximation in Equation 4, the logarithm of this
formula gives the average relative entropy when the
stimulus is s(k, l). Thus, Equations 5–10 provide a
closed-form expression for the average relative entropy
of the posterior probability distribution (that the ideal
observer computes) for arbitrary samples from the joint
probability distribution of environmental categories and
associated stimuli, p0(k, l).
To estimate the optimal linear receptive fields we use a

‘greedy’ procedure. In other words, neurons are added to
the population one at a time, with each neuron’s receptive
field being selected to produce the biggest decrease in
decoding error. Specifically, we proceed sequentially by
first finding the encoding function r1(k, l) that minimizes
�D1 (see Equation 5); then we substitute the resulting
expected posterior probability distribution p(iªr1(k, l))
into Equation 10 and find the encoding function r2(k, l)
that minimizes �D2; then we substitute the resulting
expected posterior probability distribution p(iªr2(k, l))
into Equation 10, and so on. A consequence of this
procedure is that the neural encoding functions tend to be
rank ordered in how much they reduce the relative
entropy, with the first function producing the largest
decrease. (It is possible that a simultaneous rather than
greedy procedure could lead to better performance, but we
have not yet explored this more computationally intense
approach.)
When each neuron is added we first initialize its

weights, and then perform gradient descent. Sometimes
we initialize the weights randomly. Alternatively, to
reduce the likelihood of getting trapped in local minima,
we also use an initializing step similar to that of Ullman
et al. (2002). Specifically, we first try out each normalized
image patch in the training set as an RF, and then set the
initial weights to be the normalized image patch that
yields the greatest reduction in relative entropy. The

advantage of this “stimulus-manifold-sampling” approach
is that it randomly samples starting weights that lie in the
relatively small-dimensional manifold of the natural
stimuli.

Results

Image patch identification task

In this task the goal is to accurately identify specific
image patches randomly sampled from gray-scale natural
images. In other words, we ask what encoding functions
(receptive fields) would be optimal for identifying
arbitrary specific patches of natural image. The image
patches were 12 � 12 pixels in size and randomly
sampled from calibrated gray-scale images containing no
human-made objects (van Hateren & van der Schaaf,
1998). Example image patches are shown in Figure 2a.
Figure 2b shows the estimated receptive fields of the

first six neurons (starting with random weights), for the
training set of 200 randomly selected natural image
patches shown in Figure 2a. As can be seen, the receptive
fields are relatively low spatial-frequency (smooth) pat-
terns that are similar to oriented edges and bars. It is
interesting to note that these first six receptive fields are
nearly orthogonal, even though no orthogonality con-
straint was imposed; Table 1 shows all the pair-wise
spatial correlations between the receptive fields. In
general, one expects a mixture of orthogonal and non-
orthogonal receptive fields depending on the properties of
the stimuli and on the reliability of the individual neurons
(see second example).
We have estimated optimal receptive fields for a

number of different random samples of 200 image patches
and they are generally similar in appearance to those in
Figure 2, but sometimes with a slightly different ordering.
Similarly the ordering of the receptive fields varies
somewhat depending on the initial weights, and on
whether they are selected at random or by stimulus-
manifold-sampling. This is to be expected in this case,
because each of these optimal receptive fields reduces the
expected relative entropy by a similar amount (especially
the first four receptive fields), and hence each receptive
field is about equally useful. As shown in Figure 3a, the
relative entropy declines approximately linearly with a
slope of 0.92 bits per neuron, from its initial value of
7.64 bits (log2 200). The value of the slope depends in part
upon the dynamic range and reliability of the neurons; the
larger dynamic range and the lower the neural noise level,
the steeper the slope.
An important issue is whether these estimated receptive

fields are actually the ones that optimally reduce the
average relative entropy of the posterior probability
distributions computed by the ideal observer. Recall that
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to make the estimation procedure tractable we used the
potentially questionable approximation in Equation 4. To
address this issue we directly computed the average
relative entropy in Equation 3 using Monte Carlo
techniques, for the optimal receptive fields in Figure 2
(see Equation A3 in the Appendix). Specifically, for each
image patch we determined the actual relative entropy by
Monte Carlo simulation (1000 trials) and compared it with
the estimated relative entropy based on Equation 4.
Figure 3b plots the correlation between the actual and
estimated relative entropy as a function of the number of
receptive fields; the correlations are relatively high,
suggesting that the approximation in Equation 4 is
adequate for estimating optimal neural encoding func-
tions. Importantly, as shown in Figure 3c, there is an
approximately linear relationship between the average
actual relative entropy and the average estimated relative
entropy predicted by Equation 4, although the slopes
decrease and the intercepts increase as each new receptive
field is added. If the relationship were nonlinear, then the

approximation would be biased depending on how
difficult the image patches (training samples) are to
identify. Notice that this figure suggests that the approx-
imation in Equation 4 systematically underestimates the
relative entropy.
How well does the optimal decoder, using the optimal

receptive fields, actually perform in the patch identification

Figure 2. Optimal linear receptive fields for a natural image patch identification task. a. Example set of 200 training patches randomly
sampled from calibrated natural images. b. The final weights for the first six optimal linear RFs obtained by gradient descent from random
weights. (For display purposes the receptive fields have been scaled so that the maximum absolute value is 1.0, and then interpolated by
the plotting software.)

Spatial Correlations of Receptive Fields

RF2 RF3 RF4 RF5 RF6

j0.04 j0.10 0.17 j0.09 0.08 RF1
0.10 0.03 j0.04 0.00 RF2

0.08 j0.01 j0.02 RF3
0.01 0.04 RF4

j0.04 RF5

Table 1. Spatial correlations between the six optimal receptive
fields in Figure 2b.
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task? Figure 4a plots the accuracy of the optimal decoder
as each optimal receptive field is added in. Each data point
was obtained by Monte Carlo simulation of 200 trials
for each of the 200 image patches. As can be seen, six
neurons with the noise characteristics of typical cortical
neurons are sufficient to identify image patches with 37%
accuracy where chance is 0.5%. Similar performance
(well over 30% correct) is obtained for randomly selected
test patches not in the training set, suggesting that the
receptive fields in Figure 2 are robust and not the result of
over-fitting. Figure 4b shows that the actual accuracy (for
all 6 RFs and for 200 test patches not from the training

set) is strongly correlated with the estimated relative
entropy, thus providing further evidence for the adequacy
of Equation 4.

Foreground identification task

Natural images are generally filled with occlusions
where the surface of one object blocks those of other
objects. Thus, a common natural task is to determine
which side of an object boundary contour corresponds to
the foreground surface and which side to the background.

Figure 3. Evaluation of the approximation of the relative entropy of the average posterior probability distribution across categories
computed by the ideal observer (the optimal decoder). a. The average relative entropy (across patches), determined by Monte Carlo
simulation, as function of the number of receptive fields. b. The correlation between actual (simulated) and estimated relative entropy
(using Equation 4) as a function of the number of receptive fields in the population. The correlations were computed over image patches in
the training set. c. Average actual relative entropy as a function of average estimated relative entropy (using Equation 4) for different
numbers of receptive fields in the population. The points show averages for the image patches in 8 quantiles.

Figure 4. Actual accuracy of the optimal decoder in the patch identification task, as determined by Monte Carlo simulation (i.e., applying
Equation 1, trial by trial). a. Actual accuracy as a function of the number of optimal receptive fields. b. Actual accuracy vs. estimated
relative entropy, for 200 test patches not in the training set.
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In this example, we consider the task of identifying which
side of a contour in 12 � 12 image patches of natural
foliage is the foreground surface. Unlike the previous
example, there are just two categories and a large number
of sample stimuli from each category.
To determine the optimal linear receptive fields for this

task we make use of our database of calibrated images of
close-up foliage (Geisler, Perry, & Ing, 2008). We chose
to analyze close-up foliage because that is the dominant
natural environment for macaque monkeys (the primary
animal model for human vision) and a major component
of the natural environment for many other species. Briefly,
these images were obtained with a 36-bit (12 bits per
color) camera calibrated to give the 12-bit luminance at
each pixel location. The images were hand-segmented by
human observers into objects (i.e., leafs and branches),
which provided a large number of sample surface
boundary contours. An example of a segmented image is
shown Figure 5. The database contains over 1,600
segmented objects from a wide range of foliage images
collected under various lighting conditions. Training
image patches were obtained by randomly selecting
surface boundary points from the 1,600 segmented
objects. For each image patch the segmentation gives the
orientation of the surface boundary contour at the center
of the patch and the side of the contour that corresponds to
the foreground object surface.
Figure 6a shows 200 randomly sampled 12 � 12 pixel

training patches. In order to focus on statistical properties
that distinguish foreground from background, each image
patch in the training set was rotated to a canonical vertical
orientation. Figure 6b shows the first six optimal linear
receptive fields, given the same constraints on the neurons

as in the patch identification task and using stimulus-
manifold-sampling for initializing the RFs. As can be
seen, there are of two general types of optimal RF. One
type (RFs 1 & 3) is similar to an edge selective (sine
phase) simple cell found in primary visual cortex. This
shape is consistent with the observation that the fore-
ground surface in close-up foliage tends on average to be
more intense than the background side and to have a
highlight along the occluding surface side of the boundary
(see Figure 6a). The other type (RFs 2, 4 & 5) has a
relatively uniform slightly excitatory region on one side
and excitatory and inhibitory sub-regions on the other
side. This shape is consistent with the observation that
occluding surfaces tend to cut across contours in the
background creating “t-junctions” and other patterns of
contrast modulation that are more or less perpendicular to
the occluding surface boundary (see Figure 6a).
Interestingly, there are correlations among some of the

optimal receptive fields: RFs 1 & 3 and RFs 4 & 6 are
moderately correlated, and RFs 2 & 5 strongly correlated
(see Table 2). The relatively redundant receptive fields
provide useful additional information because they reduce
the effects of the neural noise and because the task-
relevant information is concentrated within a narrow
range of spatial patterns.
The solid symbols in Figure 7a show the actual

accuracy of the optimal decoder as each optimal receptive
field is added in. Each data point was obtained by Monte
Carlo simulation of 200 trials for each of the 200 image
patches. Performance jumps up with the first receptive
field and then climbs steadily so that six neurons, with the
noise characteristics of typical cortical neurons, are
sufficient to identify the foreground side of the image
patch with an accuracy of 83%, where chance is 50%.
Similar performance is obtained for randomly selected test
patches not in the training set, suggesting that the
receptive fields in Figure 6 are robust and not the result
of over-fitting. Note also that despite the correlations
between some of the receptive fields, the increments in
accuracy are fairly constant after the first receptive field.
Figure 7b shows that the actual accuracy found by Monte
Carlo simulation (for all 6 RFs and 200 test patches not in
the training set) is highly correlated with the estimated
relative entropy based on Equation 4, again providing
evidence for the adequacy of Equation 4.

Discussion

This paper describes a new approach, accuracy max-
imization analysis (AMA), for determining the stimulus
features that are most relevant for performing specific
identification tasks. The analysis takes as input random
samples of stimuli that occur in the identification task and
returns encoding functions that represent the properties of

Figure 5. One of 96 hand-segmented close-up images of foliage
used to obtain random samples of surface boundary; segmented
leaves (blue, brown); segmented branches (yellow). The brown
leaf illustrates a single segmented object.
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the stimuli that are optimal for performing the task. The
optimal encoding functions are defined to be those that
maximize performance accuracy when combined with the
optimal decoder (Bayesian ideal observer) for the task.
AMA was illustrated by estimating optimal linear

receptive fields for an image patch identification task
and a foreground identification task. We found that stable
and intuitive results were obtained with relatively few
training samples (in the hundreds). Although the two
examples were picked primarily as demonstrations of the
general approach, they provide important new insights.
The optimal linear receptive fields for identifying arbitrary
natural image patches are relatively smooth (low-
frequency) shapes similar to receptive fields found in
primary visual cortex. Applying AMA at different spatial
scales yielded similar receptive field shapes (not shown
here), consistent with the approximate scale invariance of

rural outdoor images. The optimal linear receptive fields
for the foreground identification task were of two major
types, an edge-selective shape parallel to the surface
boundary, and edge-selective shapes perpendicular to the
surface boundary.

Spatial Correlations of Receptive Fields

RF2 RF3 RF4 RF5 RF6

j0.10 j0.60 j0.04 j0.11 0.18 RF1
j0.15 j0.02 0.96 j0.08 RF2

0.10 j0.21 j0.08 RF3
j0.04 j0.60 RF4

j0.07 RF5

Table 2. Spatial correlations between the six optimal receptive
fields in Figure 6b.

Figure 6. Foreground identification task. a. Example 12 � 12 pixel training patches. Each patch is centered on a randomly selected point
along a surface boundary contour. In estimating the receptive fields all training patches were rotated to a canonical vertical orientation;
when k = 1 the foreground was on the left when k = 2 the foreground was on the right. These patches have the foreground on the right.
b. Final weights for first six optimal receptive fields. (For display purposes the receptive fields have been scaled so that the maximum
absolute value is 1.0, and then interpolated by the plotting software.)
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It is important to recognize that, like all ideal observer
analyses, AMA is not a model of perceptual processing
but a tool for understanding the stimulus information
available to perform a task. Whether or not the informa-
tion is used by an organism, and if it is, how the organism
extracts and uses that information are separate issues. The
primary purpose of AMA is to characterize the properties
of natural stimuli that are most relevant to a given task, a
crucial step for understanding perceptual systems.

Finding optimal features

Many methods have been proposed for finding optimal
features from natural stimuli. One class of methods, which
includes principle components analysis (PCA) and inde-
pendent components analysis (ICA), focuses on character-
izing the general statistical properties of natural stimuli,
often for the purpose of understanding efficient coding of
natural stimuli. An obvious question is how the feature
dimensions found with such methods compare to those
obtained with AMA. Figure 8a shows the first six
principle components (receptive fields) of the training
images (Figure 2a) for the patch identification task. In
PCA, all the receptive fields are required to be orthogonal
and are rank-ordered in the percentage of variance
accounted for in the training set, with the first principle
component accounting for the most variance. Comparison
of Figures 8a and 2b shows that AMA and PCA find very
similar receptive fields in this task. Furthermore, the open
symbols in Figure 4a show that the identification perfor-
mance of the optimal decoder that uses the PCA receptive
fields is nearly as good as the performance of the optimal
decoder that uses the AMA receptive fields.

This is an intuitive result that has several implications.
In the patch identification task the goal is to uniquely
identify each image patch, and thus it is intuitive that one
would want an encoding where the representation of the
patches is as spread out as possible. The directions of
maximum variation in the space of image patches (the first
n principle components) might provide a near optimal
encoding given a limited number of feature dimensions.
Indeed the similarity of the PCA and AMA receptive
fields provides evidence that PCA, which is computation-
ally much simpler and faster than AMA, produces
receptive fields that are very effective for uniquely
identifying image patches. This result also suggests that
AMA is finding approximately the global optimum for
this task.
A rather different result is obtained for the foreground

identification task. Figure 8b shows the first six principle
components of the training images (Figure 6a) for the
foreground identification task. Comparison of Figures 6b
and 8b shows that AMA and PCA find rather different
receptive fields in this task. The open symbols in Figure 7a
show that the PCA receptive fields are less efficient than
the AMA receptive fields, except perhaps for the first
receptive field. For example, the second PCA component
captures the dimension in image-patch space with the
second largest variance, yet it provides essentially no
improvement in performance accuracy, even with its
matched optimal decoder for the task. Indeed, none of
the PCA receptive fields after the first provides as much
improvement in performance as the corresponding AMA
receptive field. Note that even when an added AMA
receptive field is substantially correlated with one or more
previously added receptive fields it increases accuracy
more than adding an orthogonal PCA receptive field,

Figure 7. Actual accuracy of the optimal decoder in the foreground identification task, as determined by Monte Carlo simulation. a. Actual
accuracy as a function of the number of optimal AMA receptive fields (solid symbols) and as a function of the number of PCA receptive
fields (open symbols). b. Actual accuracy vs. estimated relative entropy, for 200 test patches not in the training set.
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which one would normally expect to capture more
independent information. These results are perhaps not
surprising because for many identification tasks only
certain stimulus dimensions are relevant to the task. It is
the patch identification task that may be unique because
all the dimensions of variation between patches can
contribute to task performance.
In Figures 4a and 7a the PCA components were added

in rank order (i.e., in the order of the percentage of
variance accounted for in the training set). Another
approach is to select successive components that max-
imally increase identification accuracy, allowing repeated
use of the same component. For the patch identification
task (Figure 4a) the results are identical; each component
is only picked once and the order corresponds to the PCA
rank order. For the foreground identification task the
optimal ordering of PCA components is 1, 3, 3, 6, 4, 6
(see Figure 8b). However, the overall accuracy improves
only slightly; like Figure 4a, as components are added the

accuracy increases only about half as much as it does for
the AMA components.
AMA belongs to the second major class of methods for

finding optimal features for natural stimuli. These meth-
ods focus on finding optimal features for specific tasks.
The most popular are based on multilayer neural networks
and include back-propagation (Rumelhart, Hinton, &
Williams, 1986) and related methods (e.g., see Duda,
Hart, & Stork, 2001). Back-propagation methods are
theoretically capable of reaching optimal classification
performance. The learned weights in the early hidden
layer might be interpreted as the optimized feature
dimensions of the encoder and learned weights of the
later layers as the optimized decoder. However, both the
encoding and decoding weights must be learned simulta-
neously and there is no guarantee that the specific
architecture of the network selected (i.e., the numbers of
units per layer and activation functions) will support
optimal performance. An advantage of AMA is that the
decoder is guaranteed to be optimal and does not have to
be learned, and thus the training is entirely focused on the
encoding functions. Other than the potential for getting
trapped in local optima during training and the sampling-
noise effect of a finite training set, AMA should find the
optimal encoding functions within the family of possible
encoding functions under consideration (e.g., linear
weighting functions).
AMA is, perhaps, most related to the method of Ullman

et al. (2002), which attempts to find optimal features by
maximizing the mutual information between image frag-
ments (which serve as features) and the categories.
However, the Ullman et al. method restricts the encoding
functions to the set of image fragments in the training set,
does not represent noise in the encoder, and does not
easily generalize to larger numbers of categories.
In sum, AMA has a unique combination of desirable

properties. First, if the approximation in Equation 4 is
sufficiently accurate (which appears to be the case for our
examples), then the approach is entirely principled, and
should provide near optimal encoding functions, given
sufficient training stimuli. Second, the approach allows
explicit incorporation of biophysical constraints in the
representation of the encoded stimuli, such as neural noise
and a limited dynamic range, which are unavoidable
minimal constraints for any real perceptual system. Third,
as discussed below, the approach easily generalizes to
other kinds of tasks and to nonlinear families of encoding
functions. Fourth, it applies directly to arbitrary numbers
of categories (e.g., from 2 to 200 in our examples).

Efficiency and redundancy

The efficient coding hypothesis holds that evolution
together with learning over the lifespan push perceptual
systems toward encoding sensory information as com-
pactly as possible (i.e., with the fewest numbers of

Figure 8. Principle components. a. First six principle components
for the training data in the patch identification task (cf., Figure 2b).
b. First six principle components for the training data in the
foreground identification task (cf., Figure 6b). To maximize
comparisons with the AMA receptive fields, all image patches
were normalized to a mean of 0.0 and a standard deviation of 1.0
before computing the principle components (see Equation 6).
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neurons and/or action potentials), or equivalently, that
they push any given population of neurons in a perceptual
system toward encoding as much sensory information as
possible (Attneave, 1954; Barlow, 1961, 2001; Olshausen,
2003; Simoncelli, 2003; Simoncelli & Olshausen, 2001).
The simplest forms of the efficient coding hypothesis
ignore neural noise, and thus maximizing efficiency
generally involves maximally reducing redundancy in
the neural code (Simoncelli, 2003). However, substantial
neural noise exists in all perceptual systems and thus
efficient coding in real perceptual systems may require
substantial redundancy. Furthermore, in some tasks
redundancy is optimal because the relevant information
tends to be concentrated in certain stimulus patterns (e.g.,
the foreground identification task).
One advantage of AMA is that neural noise is explicitly

represented. Another advantage is that AMA (unlike PCA
and ICA) requires no arbitrary assumptions such as
orthogonality of the encoding functions or statistically
independent sources in the natural stimuli. Thus, like
natural evolution and learning, AMA is free to select
orthogonal, sparse or redundant encoding functions
depending on the task, the natural scene statistics, the
neural noise, and/or other biophysical constraints. For
example, in the patch identification task the optimal
encoding functions tend to be orthogonal, whereas in the
foreground identification task the optimal encoding func-
tions tend to be more redundant. More generally, the
framework illustrated in Figure 1 may provide both an
intuitive and formal understanding the relationship
between efficiency and redundancy.

Neural noise

In the examples presented here the neural noise was set
to mimic the noise properties of individual neurons in
primary visual cortex: variance proportional to the mean
response with proportionality constant (Fano factor) of
1.3, and low spontaneous activity. Thus, the estimated
linear receptive fields should be close to optimal for
neurons with noise characteristics like those in primary
visual cortex (neurons in other cortical areas generally
have similar noise characteristics to those in V1). None-
theless, an important question is the degree to which the
optimal encoding functions depend upon the amount and
structure of the neural noise. Intuition suggests that the
level of neural noise should have relatively little effect on
the form of the optimal encoding functions, but will have
an effect on the amount of redundancy in the optimal
encoding functions; the greater the level of neural noise
the more performance can be improved by adding copies
of the same optimal encoding function. In agreement with
these intuitions we estimated RFs for Fano factors varying
from 0.4 to 1.4 and found them to be quite similar.
Similarly, simulations show (in agreement with intuition)
that switching from multiplicative to additive noise has a

relatively modest effect on the form of the optimal
encoding functions.
Unlike the present assumption of statistical indepen-

dence, the noise of neurons in primary visual cortex (and
other cortical areas) tends to be correlated over space and
time (Gawne & Richmond, 1993; Lee, Port, Kruse, &
Georgopoulos, 1998; Romo, Hernandez, Zainos, & Salinas,
2003; Zohary et al., 1994). The correlations are generally
small (on the order of 0.2 or less). Such correlations have
relatively little effect on optimal encoding and decoding
for small populations of neurons (such as the small
populations considered in the present examples), but can
have substantial effects in large populations (Chen,
Geisler, & Seidemann, 2006, 2008; Seidemann, Chen, &
Geisler, 2009). It is straightforward to apply AMA in
the case of correlated Gaussian neural noise, because the
optimal decoder for correlated Gaussian noise is well
understood. Specifically, applying a ‘whitening’ filter (the
inverse of the noise correlation matrix) to the population
response removes the noise correlation, allowing AMA
to then be applied in the same way it is applied in the
statistically independent case. However, the noise cor-
relation can affect the number of redundant optimal
encoding functions needed for optimal performance and
can also have some effect on the form (shape) of the
optimal encoding functions, because of the whitening
operation.

Computational issues

There are two substantial computational limitations to
the version of AMA described here. First, for a fixed
number of categories, the number of arithmetic operations
increases in proportion to the square of the number of
training samples. Thus, applying the algorithm to very
large training sets can be prohibitively slow on standard
desktop computers; our experience is that estimating a
half dozen optimal linear (12 � 12 pixel) receptive fields,
for several hundred training stimuli, can take several
hours. However, AMA is amenable to large scale parallel
computing, which could be used to obtain estimates for
large sample sizes. An alternative procedure we employ is
to obtain estimates for different sets of training samples.
For the current examples, the optimal receptive fields
were very similar with different sets of samples, suggest-
ing that the receptive fields would not change greatly (just
be smoother) with a very large sample size.
A second limitation is that simple gradient descent is

used to estimate the optimal encoding functions, and thus
there is the usual potential problem of getting trapped in
local optima. Two versions of gradient descent were used
here. In one version the encoding functions were initial-
ized with random values. For the patch identification task
a similar family of final encoding functions was obtained
for different random starting values, but the ordering of
the different function shapes varied somewhat; for the
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foreground identification task, the encoding functions
were less stable. In the other version, the encoding
functions were initialized with stimulus-manifold-
sampling. For the patch identification task the final
encoding functions were very similar to those obtained
with random sampling; for the foreground identification
task, the final encoding functions were superior (lower
relative entropy and more stable across training sets). A
future direction is to explore more sophisticated param-
eter estimation procedures.

Cost–benefit (utility) functions

In some natural identification tasks, correct responses
will not all have equal benefit and errors will not all have
equal costs. In such cases it is necessary to include a cost–
benefit (utility) function +(i, j) that gives the utility of
picking category i when the correct category is j. This
utility function is specified in the definition of the
identification task. In the standard Bayesian approach, a
rational observer is defined to be one that picks the
category with the maximum expected utility (i.e., mini-
mum risk):

�+ ijRq

� �
¼

Xm
j¼1

+
�
i; j
�
p jjRq

� �
:

A simple way to generalize the current algorithm is to
restrict (without loss of generality) the utility function to
values greater than zero. Then, the expected utility of each
category is always greater than or equal to zero, and thus
we can obtain a simple generalization of Equation 5:

�Dq ¼ j
1

n

Xn
i¼1

log max
x

�+ xjrq Ki;Lið Þ
� �h i

:

This function reduces to Equation 5 when the utility of
corrects is 1.0 and of errors is 0.0.
How much does the utility function, +(i, j), affect the

optimal encoding functions? We have not yet systemati-
cally explored this question, but it is possible that the
optimal encoding functions are relatively insensitive to
modest variations of the utility function. For example, the
primary effect of variations of the utility function in many
identification tasks is to change decision boundaries and
such changes presumably do not change the stimulus
dimensions (features) that are optimal for performance of
the task, but this remains to be explored.
Finally, note that estimation tasks can be described as

identification tasks where the categories are ordered and
dense. Thus, by defining utility functions that appropriately
reward picking categories near the correct category it may
be possible to apply AMA to natural estimation tasks.

Nonlinear encoding functions

In the present examples the encoding functions were
restricted to the family of linear weighting functions.
However, any parameterized family of encoding functions
could be used. For example, the encoding functions could
include a parameterized expansive, compressive or divi-
sive nonlinearity. The parameters of the nonlinearity could
be estimated simultaneously with the linear weights, all by
gradient descent, with little additional computational cost.
Thus, with AMA there is no particular limitation on the
family of encoding functions considered.

Optimal decoding

The purpose of accuracy maximization analysis is to
find those stimulus properties (represented by the optimal
encoding functions) that are most useful for performing a
given perceptual task. To do this we use, as the decoder, a
closed-form approximation of the Bayesian ideal observer
that knows the mean response and noise characteristics of
each neuron (i.e., of each encoding function output) to
each stimulus in the training set. Because we are only
interested here in finding the optimal encoding functions,
we do not require the optimal decoder to generalize
beyond the training set. We do however check the
generality of the optimal encoding functions by compar-
ing the optimal encoding functions obtained with different
training sets, and by checking whether the optimal
encoding functions estimated from a given set of training
stimuli yield similar performance accuracy on other
random sets of stimuli.
Once the optimal encoding functions are nailed down

with AMA, a logical next step is to determine the joint
distribution of environmental states and optimal feature
values by measuring the responses of the optimal encod-
ing functions to large numbers of stimuli (e.g., see Geisler,
2008). Determining this distribution is relatively easy
because the natural stimuli are mapped into the relatively
low-dimensional space where each axis represents the
response of one of the optimal encoding functions.
Standard pattern classification techniques (Duda et al.,
2001) can then be used to find the decision functions of
the generalized optimal decoder, which might serve as a
principled hypothesis for decoding in the brain (e.g., see
Geisler & Perry, 2009).

Task dependent versus task independent
encoding

The purpose of AMA and related methods is to
determine the stimulus properties that are most relevant
for performing specific tasks. This is useful for gaining an
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understanding of the computational requirements of
natural tasks, providing a benchmark against which to
evaluate an organism’s performance, suggesting hypoth-
eses for neural encoding, and designing artificial vision
systems for specific tasks.
A more general issue is whether the receptive fields

(encoding functions) observed in the early levels of the
visual system (e.g., V1) are a composite of specialized
receptive fields for various specific tasks or whether they
are better described as an efficient coding of the general
structure of natural images (e.g., see Simoncelli &
Olshausen, 2001). An argument for the latter case is that
primates (and many other mammals) perform such a wide
variety of specific visual tasks, each requiring different
kinds of information, that the best one can do is encode
the local image information in as compact (low redun-
dancy) and as separable/accessible (sparse) a representa-
tion as possible. However, it is perhaps even more plausible
that certain common low-level tasks, such as local contour
detection/grouping, local texture discrimination/grouping,
and foreground identification, are components of most
visual tasks and hence that these low-level tasks have
driven the selection/learning of specific receptive field
types in early visual areas.
These seemingly different views of early visual coding

may not be so different. For example, in the current
pattern identification task the goal seems to boil down to
finding a small set of feature dimensions that spread out
the representation of natural image patches as much as
possible. Thus, the optimal feature dimensions for this
task at various spatial scales (sizes of image patches) may
represent an efficient coding of the general structure of
natural images. Another reason that the two views may
overlap is that there may be substantial statistical depend-
ence between some of the common low-level tasks, which
may lead to features optimized for more than one low-
level task (e.g., there is similarity between some of the
optimal features for the patch identification and fore-
ground identification tasks).

Conclusion

Perceptual systems must reflect those statistical proper-
ties of natural stimuli that enable performance of the tasks
the organism normally performs to survive and reproduce.
Thus, a critical step in systems and behavioral neuro-
science is to gain a rigorous understanding of task-
relevant natural scene statistics. A rigorous understanding
of these statistics is not only important in its own right,
but can provide principled hypotheses for what stimulus
properties are coded by perceptual systems and for how
the brain might exploit those properties in performing its
natural tasks. The method for measuring these statistics
described here (accuracy maximization analysis) is com-

putationally intensive, but has the potential for rigorously
determining optimal stimulus properties for a wide range
of specific natural tasks.

Appendix A

Here we derive formulas for the posterior probability
distribution that is computed by the ideal Bayesian observer
when receiving a population response Rq(k, l) to a pre-
sentation of stimulus s(k, l). (Keep in mind that the ideal
observer does not know that the stimulus is s(k, l), but does
know the mean response of each neuron in the population to
each stimulus in the training set.) According to Bayes’ rule:

p xjRqðk; lÞ
� �

¼ p Rqðk; lÞjx
� �

pðxÞXm
i¼1

p Rqðk; lÞji
� �

pðiÞ
:

Given the assumed statistical independence of the neural
noise we have,

p xjRqðk; lÞ
� �

¼
pðxÞ

Yq
t¼1

p Rtðk; lÞjxð Þ
Xm
i¼1

pðiÞ
Yq
t¼1

p Rtðk; lÞjið Þ
: ðA1Þ

To derive the recursive formula in text Equation 10 we
rewrite the above equation,

p xjRqðk; lÞ
� �

¼
p Rqðk; lÞjx
� �

p
�
x
�Yqj1

t¼1

p Rtðk; lÞjxð Þ
Xm
i¼1

p Rqðk; lÞji
� �

p
�
i
�Yqj1
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p Rtðk; lÞjið Þ

p xjRqðk; lÞ
� �

¼
p Rqðk; lÞjx
� �

p xjRqj1ðk; lÞ
� �

Xm
i¼1

p Rqðk; lÞji
� �

p ijRqj1ðk; lÞ
� � ;

p xjRqðk; lÞ
� �

¼
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p Rqðk; lÞjx; j
� �
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p ijRqj1ðk; lÞ
� �Xni
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;
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1
ni
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By substitution of text Equation 8 we have:

p xjRqðk; lÞ
� �

¼

p xjRqj1ðk; lÞ
� �

1
nx

Xnx
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1
Aqðx;jÞ exp j 1

2
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Aqðx;jÞ2

� 	
Xm
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1
ni
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1
Aqði;jÞ exp j 1

2

Rqðk;lÞjrqði;jÞ½ �2
Aqði;jÞ2

� 	 :

ðA2Þ
Equation 10 then follows by substitution from Equation 4.
Note, Z in Equation 10 corresponds to the denominator in
Equation A2.
The following non-recursive version of this equation,

which follows directly from Equation A1, was used in the
Monte Carlo simulations underlying Figures 3, 4 and 7:

p xjRqðk; lÞ
� �

¼
1
nx
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1
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Footnote

1
Note that making the variance proportional to the

absolute value of the mean response allows negative
responses. We could easily have half-wave rectified the
responses to be more consistent with real neurons, but
allowing negative responses reduces the number of
optimal encoding functions that need to be estimated.
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