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Abstract 
To model the responses of neurons in the early visual system, at least three basic components are 
required: a receptive field, a normalization term, and a specification of encoding noise. Here, we 
examine how the receptive field, the normalization factor, and the encoding noise impact the model 
neuron responses to natural images and the signal-to-noise ratio for natural image discrimination. 
We show that when these components are modeled appropriately, the model neuron responses to 
natural stimuli are Gaussian distributed, scale-invariant, and very nearly maximize the signal-to-
noise ratio for stimulus discrimination. We discuss the statistical models of natural stimuli that can 
account for these response statistics, and we show how some commonly used modeling practices 
may distort these results. Finally, we show that normalization can equalize important properties of 
neural response across different stimulus types. Specifically, narrowband (stimulus- and feature-
specific) normalization causes model neurons to yield Gaussian-distributed responses to natural 
stimuli, 1/f noise stimuli, and white noise stimuli. The current work makes recommendations for 
best practices and it lays a foundation, grounded in the response statistics to natural stimuli, upon 
which principled models of more complex visual tasks can be built. 
 
Keywords 
Natural scene statistics, natural images, simple cell, early visual cortex, receptive field, broadband 
normalization, narrowband normalization, encoding noise, contrast, similarity, signal-to-noise 
 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/387183doi: bioRxiv preprint first posted online Aug. 7, 2018; 

http://dx.doi.org/10.1101/387183
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 
As interest intensifies in understanding natural signals in vision and neuroscience, it becomes 
increasingly important to develop a clear picture of how neural systems and their constituent 
components respond to real-world (photographic) images. Characterizing the statistical properties 
of these responses is vital for building principled models of visual processing, especially given the 
increasing reliance of vision and visual neuroscience on probability theory (Knill & Richards, 1996). 
Over the past two decades, there have been many neurophysiological (Baudot et al., 2013; 
Burkhardt, Fahey, & Sikora, 2006; Butts et al., 2010; Felsen, Touryan, Han, & Dan, 2005; Lesica et 
al., 2007; Talebi & Baker, 2012; Weliky, Fiser, Hunt, & Wagner, 2003) and computational (Brady & 
Field, 2000; Burge & Geisler, 2014; 2015; Clatworthy, Chirimuuta, Lauritzen, & Tolhurst, 2003; Lyu 
& Simoncelli, 2008; 2009b; Sebastian, Abrams, & Geisler, 2017; Tadmor & Tolhurst, 2000; 
Wainwright & Simoncelli, 2000) attempts to address this issue.  
 
We report a large-scale analysis of model neuron response statistics to natural images. To model 
neural responses, at least three basic components are required: a receptive field, a normalization 
term, and a specification of encoding noise. The receptive field specifies the neuron’s preferred 
stimulus feature, and indicates how inputs are weighted and summed (i.e. pooled) across space to 
determine the response (Hubel & Wiesel, 1962; 1968). The normalization term specifies how gain 
control is implemented to prevent the neuron’s response from exceeding its dynamic range 
(Albrecht & Geisler, 1991; Heeger, 1992). The encoding noise specifies the uncertainty in the  
response to repeated presentations of the same stimulus (Tolhurst, Movshon, & Dean, 1983a). 
 
We examine how methods for modeling the receptive field, the normalization factor, and the 
encoding noise impact the response statistics to natural images and the signal-to-noise ratio for 
stimulus discrimination. We focus our analysis on model neurons with oriented receptive fields like 
those in early visual cortex. We show that feature-specific normalization of each stimulus, with an 
easy to compute normalization factor, yields model neuron responses to natural images that are 
Gaussian distributed. We show that the stimulus-driven response variance is invariant to the scale 
of the preferred feature. We also show that responses with these statistics nearly maximize the 
signal-to-noise ratio for stimulus discrimination given the noisy neural response. Furthermore, we 
show that subtle variants of the standard response model, which are used across the vision and 
computational neuroscience communities, have an important impact on the results described 
above. To achieve scientific consensus on basic facts about natural stimulus processing early in 
the visual system, it is important to understand how variants of the standard response model 
impact response statistics.  
 
Results 
How do common receptive field modeling choices impact response statistics and natural image 
discrimination? To investigate, we first establish the relation between response variability and 
stimulus discriminability.	 Second, we describe a common model of neural response in early visual 
cortex and discuss how two different forms of normalization impact the response statistics and 
impact natural stimulus discriminability. Third, we discuss the statistical models of natural stimuli 
that can account for these results. 
 
Stimulus discriminability from neural response 
Consider a model neuron that produces a particular response distribution across tens of thousands 
of natural stimuli.	Any early visual representation must be capable of distinguishing two arbitrary 
stimuli from one another. How well can a neuron distinguish to arbitrary stimuli from the ensemble 
of natural stimuli? To assess the signal-to-noise ratio (SNR) for stimulus discrimination given the 
responses of a particular neuron, we compute the discriminability of two arbitrary stimuli, randomly 
sampled from the natural distribution of stimuli.  
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Figure 1. Stimulus-driven response variability and the signal-to-noise ratio for stimulus discrimination. A Model neuron 
yielding low stimulus-driven response variance. Two natural images elicit encoding-noise-corrupted responses (shaded 
bell curves) that are hard to discriminate based on the responses (top). Low stimulus-driven response variability to the 
natural image ensemble is associated with poor signal-to-noise for stimulus discriminability (bottom). Two randomly 
stimuli will be hard to discriminate on average. B Model neuron with high stimulus-driven response variance. The same 
two random stimuli are now easier to discriminate, as will randomly sampled images from the natural image ensemble.  
 
The discriminability (i.e. d-prime) of any two stimuli based this neuron’s response is given by  
 

 
 
SNRij = ′dij =

ri − r j

σ I

         (1) 

 
where  ri  and  r j  represent the expected model neuron responses to two randomly sampled stimuli 

and  σ I  represents internal encoding noise. 
 
The response distribution  p r( )  to natural stimuli has a critical impact on discriminability. Under the 

assumption that responses to natural stimuli are Gaussian distributed 
  
p r( ) = N 0,σ E

2( )  the 

expected discriminability across all stimuli is given by  
 

 
  
E SNR⎡⎣ ⎤⎦ = E ′d⎡⎣ ⎤⎦ =

σ E

σ I

2
π

        (2) 

 
where  σ E  is the stimulus-driven (external) response variation (e.g. external noise; see Fig. 1) and 
the expectation is taken across all stimulus pairs (see Supplement). (If responses are Laplace 

distributed, the expected discriminability is given by 
  
E SNR⎡⎣ ⎤⎦ =

σ E

σ I

3
2 2

; see Supplement). For an 

arbitrary response distribution, expected SNR can be computed using numerical methods. The fact 
that the stimulus-driven standard deviation is in the numerator of Eq. 2 indicates that greater 
stimulus-driven response variation yields better stimulus discriminability.  
Increased variance is usually associated with poorer stimulus discriminability (Ernst & Banks, 
2002), so Eq. 2 deserves further explanation. The source of the response variance is critical for 

A B

Receptive Field Response

External Variability

Internal
Variability

External + Internal Variability

Pr
ob

ab
ilit

y

Receptive Field Response

External Variability

External + Internal Variability

Internal
Variability

Model
Neuron

Model
Neuron

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/387183doi: bioRxiv preprint first posted online Aug. 7, 2018; 

http://dx.doi.org/10.1101/387183
http://creativecommons.org/licenses/by-nc/4.0/


	 2 

determining whether it helps or hurts discrimination. When response variance is primarily due to 
noise, stimulus discriminability is poor. When response variance is primarily stimulus-driven, 
stimulus discriminability is high. For example, if the sensory afferents to a model neuron’s receptive 
field are severed, the stimulus-driven response variance will be zero, and discriminating stimuli 
based on its response would be impossible. Fig. 1A shows a model neuron with low stimulus-
driven response variance. Fig. 1B shows a model neuron with high stimulus-driven response 
variance. The top row shows how encoding noise (shaded bell curves) limits discriminability for two 
natural stimuli. The bottom row shows the impact of stimulus-driven variability across the image 
ensemble. High stimulus-driven variability will tend to yield larger differences between the expected 
responses to two random stimuli. Thus, discriminability improves when the source of the response 
variability is external and stimulus-driven, and discriminability deteriorates when the source of the 
response variability is internal and due to noise. It should be noted that the design of the visual 
system is surely driven by tasks more sophisticated than stimulus discrimination but for present 
purposes, it is a useful task around which to organize our discussion.  
 
Model neuron responses 
Responses of neurons in early visual cortex are commonly modeled as arising from a series of 
processing stages that are constrained by known properties of neural response in the early system 
(Fig. 2A). First, a linear receptive field filters the stimulus to yield the linear response. Next, the 
linear response is normalized by a factor that is determined by local properties of the stimulus or by 
the responses of other neurons in a local pool (Albrecht & Geisler, 1991; Heeger, 1992); the 
normalized response is called the ‘response drive’. Last, the response drive is corrupted by 
encoding noise. Many models of neural response also incorporate response rectification and a 
static output non-linearity. We consider the effect of these non-linearities in the discussion, but our 
primary analysis is focused on the response drive statistics.  
 
More specifically, the response  R  to a particular stimulus is given by  

 
    
R = rmax

f Tc
N

⎡

⎣
⎢

⎤

⎦
⎥

response
drive!

 +  ε          (3) 

where   rmax  is the neuron’s maximum response,  f  is the receptive field,  c  is a contrast stimulus 

(possibly corrupted by input noise),  N  is the normalization factor, and 
  
ε ~ N 0,σ I

2( ) 	is encoding 

noise. The standard deviation  σ I  of the internal encoding noise can be constant or it can scale 
with the mean response (i.e. ‘Poisson-like’). The receptive field is assumed to have a vector 
magnitude (i.e. L2 norm) of 1.0.  
 
The maximum response is set to a constant for all model neurons. In individual simple cells, 
maximum firing rate is thought to be independent of preferred spatial frequency, orientation, and 
other stimulus preferences. It has been observed that overall firing rate in cortex tends to decrease 
as spatial frequency increases. But this decrease in overall firing rate is likely to be a population 
effect due to a non-uniform distribution of spatial frequency preferences in cortex, to sampling bias 
for low spatial frequencies in neuroscience studies, or both (De Valois, Albrecht, & Thorell, 1982a; 
Foster, Gaska, Nagler, & Pollen, 1985; Victor, Purpura, Katz, & Mao, 1994). Thus, in the current 
paper, and without loss of generality, for all receptive fields we assume   rmax  equals 1.0. We focus 

on characterizing the statistics of the response drive   f
Tc N  to natural stimuli.  
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Figure 2. Model neuron. A Critical stages of neural response model: linear filtering, response normalization, and 
encoding noise. The stimulus is encoded by a linear filter, normalized by a portion of the stimulus energy, and then 
corrupted by encoding noise. The model neuron response provides a prediction of intracellular voltage or spike rate, 
depending on circumstances. B Contrast response function for the receptive field’s preferred stimulus: a vertical Gabor. 
C Orientation tuning function for three different spatial frequencies: stimulus frequency equals the preferred spatial 
frequency (black), 2x the preferred spatial frequency (dark gray), and 3x the preferred spatial frequency (light gray).  
 
The response model in equation 3 enforces the limited dynamic range of neural response in cortex 
and helps describe the shape of the contrast response functions of neurons in cortex (Fig. 2B). The 
response model also accounts for the invariance of the shapes of orientation tuning curves to 
Gabor or grating stimuli having different spatial frequencies (Fig. 2C).  
 
Receptive field 
A receptive field is a function that weights and sums inputs across space and time to determine a 
neuron’s response. Responses increase when receptive field locations having positive weights are 
stimulated with input increments and decrease when stimulated with input decrements. The 
opposite happens with locations having negative weights. In early visual cortex, simple cell 
receptive fields are often modeled as having the shape of a Gabor—a cosine wave windowed by a 
Gaussian envelope (Jones & Palmer, 1987a; 1987b). Gabor receptive fields are orientation and 
spatial frequency selective; the selectivity is commonly quantified by the bandwidth. The orientation 
bandwidth specifies the range of input orientations that can elicit a response. The median 
orientation bandwidth in cortex is 42º (De Valois, Yund, & Hepler, 1982b). The spatial frequency 
bandwidth specifies the range of input spatial frequencies that can elicit a response. The 
distribution of simple cell bandwidths in cortex ranges between 0.8 to 1.8 octaves at half-height, 
with a median bandwidth of 1.2 octaves (De Valois, Albrecht, & Thorell, 1982a). We will 
characterize the response statistics of model neurons with vertically oriented Gabor receptive fields 
having the median orientation bandwidth of 42º and spatial frequency bandwidths that span the 
same range as simple cell receptive fields in cortex (octave bandwidths = 0.8, 1.2, and 1.8; Fig. 
3AB). We examine model neuron responses having receptive fields with preferred spatial 
frequencies between 2 and 8 cpd.    
 
Early models of neural response proposed that response drive is a linear function of the input 
stimulus (Campbell, Cleland, Cooper, & Enroth-Cugell, 1968; Hubel & Wiesel, 1962; 1968). The 
linear receptive field responses   Rlin = f Tc  to natural stimuli are nicely approximated by a 
generalized Gaussian with tails heavier than a Laplace distribution (Fig. S1). Previous analyses of 
linear responses have reported similar findings (Wainwright & Simoncelli, 2000). We do not focus 
on the linear responses because real neurons include response normalization. 
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Figure 3. Gabor receptive fields and amplitude spectra. A Gabor receptive fields with octave bandwidths of 0.8, 1.2, and 
1.8, and orientation bandwidths of 42º. Different octave bandwidths correspond to preferred features with different aspect 
ratios (see Methods). B Amplitude spectra of Gabor receptive fields. Orientation bandwidth  BW

θ
 is the polar angle 

spanned by the amplitude spectrum at half-height. Spatial frequency bandwidth  BW
SF
= f

hi
− f

lo
 is the range of 

frequencies spanned by the spectrum, where  f
hi

 and  f
lo

 are the high and low frequencies at half-height. Octave 

bandwidth   BW
oct

= log
2

f
hi

f
lo

( )  is the log-base-two ratio of the frequencies.  

 
Response normalization 
The linear model explains neural responses in some regimes, but it is insufficiently rich to capture 
neural response properties over a wide range of stvimulus conditions. Response normalization was 
originally proposed to account for the limited dynamic range of neurons in early visual cortex 
(Albrecht & Geisler, 1991; Heeger, 1992). Evidence for response normalization has been observed 
in primate retina, lateral geniculate nucleus, and early visual cortex (Albrecht & Geisler, 1991; 
Benardete, Kaplan, & Knight, 1992; Carandini, Heeger, & Movshon, 1997; Chander & Chichilnisky, 
2001; Heeger, 1992; Mante, Bonin, & Carandini, 2008; Mante, Frazor, Bonin, Geisler, & Carandini, 
2005; Nishimoto, Ishida, & Ohzawa, 2006; Shapley & Victor, 1978; Solomon, Peirce, Dhruv, & 
Lennie, 2004). In more recent years, normalization has been proposed to occur in higher cortical 
areas and be associated with computations underlying diverse behavioral phenomena (Carandini 
& Heeger, 2012). We examine how two types of response normalization—broadband normalization 
and narrowband normalization—impact the responses of model neurons to natural stimuli.  
 
Broadband normalization is stimulus-specific but feature-independent. With broadband 
normalization, the model neuron responses are normalized by all the stimulus contrast in a local 
image region at the receptive field location, regardless of its preferred feature (Carandini et al., 
1997); all orientations and spatial frequencies normalize the linear response. The broadband 
normalization factor is  
 

 

    

Nbrd = c = ci
2∑

stimulus
contrast energy!

       = Ac = Aci

2∑
stimulus

contrast power!

         (4) 
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where  c  is a (possibly noisy) Weber contrast stimulus,   Ac  is the amplitude spectrum of the 

contrast stimulus, and the L2 norm operator ⋅  gives the square root of the sum of squares. 
Parseval’s theorem guarantees that the total energy of the contrast stimulus equals the total power 
of its amplitude spectrum (Fig. 4A). Note that if the contrast stimulus is noisy (e.g. corrupted by 
pixel noise), the broadband normalization factor equals 

   
Nbrd = ci

2 +σ i
2∑  to very close 

approximation, where σ  is the standard deviation of the input noise (Burge & Geisler, 2014).  
 
Narrowband normalization is stimulus-specific and feature-dependent. With narrowband 
normalization, the model neuron responses are normalized by the stimulus contrast in the pass 
band of the receptive field, which means that the stimulus features that contribute most prominently 
to the normalization factor are those that approximately match the preferred feature (Fig. 4B). For 
example, if the receptive field’s preferred stimulus is a vertically oriented Gabor with a carrier 
frequency of 4 cpd, the responses are normalized primarily by features that are near vertical and 
near to 4 cpd. The narrowband normalization factor is given by  
 

 
   

Nnrw = Nbrd S

       = Ac
T Af

           (5) 

where 
  
S =

Ac
T Af

Ac Af

 is the phase-invariant similarity, the cosine similarity between the stimulus and 

receptive field amplitude spectra (Sebastian et al., 2017). (The amplitude spectrum of the receptive 
field   Af  is assumed to have an L2 norm of 1.0.) Similarity is thus constrained to take a value 
between 0 and 1, which means that the narrowband normalization factor is always less than or 
equal to the broadband factor.  
 
Broadband-normalized responses   Rbrd ∝ f Tc Nbrd  to natural stimuli are highly non-Gaussian. The 
Laplace distribution provides an excellent fit to the broadband responses for all preferred spatial 
frequencies and octave bandwidths (Fig. 4C,D; Fig. S2). Narrowband-normalized responses 

  Rnrw ∝ f Tc Nnrw   differ from broadband responses in two important ways. First, natural-stimulus-

driven response standard deviation  σ E  is approximately two and a half times higher for 
narrowband than broadband responses. Second, narrowband normalization yields response 
distributions that are very nearly Gaussian (Fig. 4C,D; Fig. S3). Related findings have been 
reported by other groups (Burge & Geisler, 2014; 2015; Jaini & Burge, 2017; Lyu & Simoncelli, 
2008; 2009a; Sebastian et al., 2017; Wainwright & Simoncelli, 2000).  
 
Relative to broadband normalization, narrowband normalization also improves signal-to-noise for 
stimulus discrimination by nearly three times, assuming constant encoding noise (Fig. 4E). The 
improvement in signal-to-noise is mediated both by the more Gaussian (lighter-tailed) response 
distributions (Fig. S4A), and by the increased stimulus-driven response variability (Eq. 2). Poisson-
like encoding noise, which is more like response noise in cortex (Tolhurst, Movshon, & Dean, 
1983b), yields very similar results (Fig. S4B-D).  
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Figure 4. Broadband vs. narrowband normalization with a Gabor-shaped receptive field. A Broadband normalization 
uses all the stimulus contrast (gray area) to normalize the linear receptive field response, regardless of orientation and 
spatial frequency. The diamond shaped contours represent the amplitude spectrum of an individual natural image patch. 
B Narrowband normalization uses only the stimulus contrast in the pass band of the receptive field (gray area) to 
normalize the linear receptive field response. C Probability of model neuron responses. With broadband normalization, 
receptive field responses to natural stimuli are highly non-Gaussian, and are nicely approximated by a Laplace 
distribution (dashed curve). With narrowband normalization, the same receptive field yields responses to natural stimuli 
that are well described by a Gaussian (solid curve). D Same responses as in C, but with the y-axis showing log-
probability over three orders of magnitude. E Factor improvement in signal-to-noise (SNR) for stimulus discriminability 
with narrowband vs. broadband normalization. Results are shown for a vertically oriented Gabor with an orientation 
bandwidth of 42º and an octave bandwidth of 1.2. Similar results are obtained for other receptive fields. 
 
Why does narrowband normalization increase stimulus-driven response variance relative to 
broadband normalization? Because the narrowband normalization factor is always less than or 
equal to the broadband normalization factor (Fig. 5A; Eqs. 4,5). Therefore, across many stimuli, the 
response distribution will tend to have larger variance with narrowband normalization. Why does 
narrowband normalization result in more Gaussian responses than broadband normalization? 
Because narrowband normalization causes small broadband responses to be amplified 
significantly, and leaves large broadband responses relatively unchanged (Fig. 5B). For example, if 
the stimulus is a poor match to the receptive field (i.e. the broadband response approaches 0.0), it 
is likely that only a small proportion of the stimulus contrast is in the pass band of the receptive 
field. This, in turn, means that the narrowband normalization factor will be quite small compared to 
the broadband factor, which will increase the proportion by which the narrowband response is 
amplified relative to the broadband response (Eq. 5; Fig. 5B,C). On the other extreme, if the 
stimulus is a perfect match to the receptive field, the broadband response equals   rmax , and all the 
stimulus contrast must be in the pass band of the receptive field. The narrowband and broadband 
normalization factors will thus be identical, and the narrowband response will equal the broadband 
response. Intermediate broadband responses are amplified by an intermediate amount (Fig. 5C). 
These effects mediate the differences in the shapes of the broadband and narrowband response 
distributions (Fig. 5D).	
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Figure 5. Broadband vs. narrowband normalization. A The narrowband normalization factor is smaller than the 
broadband normalization factor for each stimulus. B Proportion that the narrowband response is larger than the 
broadband response  Rnrw

R
brd

 as a function of the broadband response. Large proportions occur only for small 
broadband responses, accounting for why narrowband normalization increases the Gaussianity of the model neuron 
responses. C Distribution of the proportional increase in the narrowband response relative to the broadband response, 
conditioned on different absolute values of the broadband response (colors), as fit by inverse gamma distributions (Fig. 
S5). The proportion is equivalent to inverse similarity. Arrows in B mark the absolute values of broadband response upon 
which the proportions are conditioned. D Schematic showing why the relationship between the narrowband and the 
broadband responses contributes to the increased Gaussianity of the model neuron responses. The data in A-C are for a 
vertically oriented cosine-phase Gabor receptive field with an orientation bandwidth of 42º, an octave bandwidth of 1.2, 
and a preferred frequency of 2 cpd. Results are similar for all receptive fields. 
 
The proportional increase  Rnrw Rbrd  of the narrowband response vs. the broadband response 
depends strongly on the broadband response (Fig. 5B). Figure 5C shows conditional distributions 
of proportional increase for five different absolute values of the broadband responses, as fit by 
inverse gamma distributions (Fig. S5). When stimuli are narrowband normalized, small broadband 
responses are amplified more than large broadband responses. 
 
There is an additional point worth making. The results presented in Fig. 4C,D suggest that the 
broadband-normalized responses can be represented as a Gaussian scale mixture of random 
variables. When considering natural images, the input contrast image  c  is a random variable. It 
follows that the broadband-normalized response  Rbrd , the narrowband-normalized response  Rnrw , 
and the phase-invariant similarity  S  are all random variables. By combining equations 4-5, it is 
easy to show that these variables have the following relationships 

  
  
Rbrd =

f Tc
Nbrd

= f Tc
Nnrw

S = RnrwS         (6A)
 

  Rbrd = Rnrw S 2

                       
       (6B)

 Equation 6B implies that the broadband-normalized responses are distributed as 
  
Rbrd ~ N 0,S 2( )  

because the narrowband-normalized responses are approximately zero-mean Gaussian (see Fig. 
4C,D). Furthermore, given that the broadband responses are approximately Laplace-distributed 
(see Fig. 4C,D), equation 6B also implies that the square of the phase-invariant similarity should be 
approximately Gamma distributed. This is because the Laplace distribution can be represented as 
a Gaussian scale mixture when the mixing distribution (i.e. the variance of the Gaussian) is 
Gamma distributed with a shape parameter of 1.0 (i.e. an Exponential distribution 

  S
2 ~ Γ α = 1,β( ) = Exp β( ) ) (Ding & Blitzstein, 2018). Figure 6B,C shows that   S 2  is indeed nicely 

approximated by a Gamma distribution with a shape parameter of 1.4, which is Exponential to 
close approximation. Thus, normalizing the broadband responses by the similarity yields Gaussian-
distributed narrowband responses. 
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Figure 6. Broadband responses represented as a Gaussian scale mixture. A Laplace-distributed broadband responses 
can be expressed as a scale mixture of Gaussian narrowband responses with a Gamma (i.e. Exponential) distributed 
mixing variable. B Squared similarity across all natural stimulus (bars) and a Gamma distribution fit via maximum 
likelihood (solid curve); an Exponential distribution (a gamma distribution with a shape parameter of 1.0) is shown for 
reference (dashed curve). C Same data as A on a log-probability axis spanning two orders of magnitude with Gamma 
and Exponential fits. The exponential distribution is shifted vertically to reduce clutter. These results data are for a 
vertically oriented cosine-phase Gabor receptive field with an orientation bandwidth of 42º, an octave bandwidth of 1.2, 
and a preferred frequency of 2 cpd. Results are similar for all receptive fields. 
 
Lyu & Simoncelli (2008) also modeled linear filter responses to natural images as a Gaussian scale 
mixture. Specifically, they modeled the linear (un-normalized) filter responses as a Gaussian scale 
mixture. They estimated the value of the mixing random variable, from the joint responses of a 
large bank of multi-scale filters. One potential advantage of the work presented here is that the 
narrowband normalization factor (i.e. the value of the mixing random variable) can be computed 
directly from the amplitude spectra of the stimulus and the receptive field (Eq. 5). Being able to 
compute the normalization factor directly from the stimulus may make stimulus- and feature-
specific normalization easier to implement for some computational investigations.  
 
Normalization pooling region 
The receptive field specifies how inputs are weighted and pooled across space to determine the 
stimulus drive (i.e.   f

Tc ) to neural response. Receptive fields are typically modeled by a matrix of 
positive and negative weights that determine how the value of each stimulus pixel contributes to 
the response  (see Fig. 3). Here, we ask how the visual angle spanned by the receptive field 
weight matrix impacts the response statistics of model neurons to natural stimuli. The visual angle 
spanned by the receptive field weight matrix impacts the statistics because it determines the 
stimulus region from which the normalization factor is computed (Eqs. 4,5; see below). 
 
Consider two sets of neurons employing narrowband contrast normalization having receptive fields 
with Gabor-shaped preferred features. In the first set, the visual angle spanned by the receptive 
field weight matrix becomes increasingly mismatched to its preferred feature with increases in 
preferred spatial frequency (Fig. 7A). In the second set, the visual angle spanned by the receptive 
field weight matrix is matched to the preferred feature regardless of its spatial frequency (Fig. 7B). 
These two sets of model neurons produce very different sets of response distributions to natural 
stimuli. When the weight matrix and preferred feature are matched (i.e. span the same visual 
angle), the normalization factor is computed from the same image region that drives the linear 
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receptive field response, and the response distributions have constant variance and are 
approximately Gaussian for all preferred spatial frequencies. When the weight matrix and preferred 
feature are mismatched, the normalization factor is computed from an image region larger than the 
preferred feature, the response variance decreases with the inverse frequency (1/f) of the preferred 
feature and the response distributions become less Gaussian (Fig. 7C). These results are 
summarized by the stimulus-driven response standard deviation and kurtosis (Fig. 7D,E). Note 
also that for the largest mismatch considered here, the narrowband response distribution is well 
approximated by a Laplace distribution. Thus, for large mismatches the benefits of narrowband 
response normalization are surrendered. (See Supplement for results with broadband 
normalization; Fig. S6.)  

 
Figure 7. Narrowband response statistics with receptive field weight matrices that are A mismatched and B matched to 
the preferred feature: a vertically oriented Gabor with 1.2 octave bandwidth and 42º orientation bandwidth. C Response 
distributions from matched and mismatched matrices. Matched weight matrices (solid curves) yield response distributions 
that are invariant to the scale of the preferred feature. Mismatched weight matrices (dashed curves) yield response 
distributions that change shape and variance with the magnitude of the mismatch. D Response standard deviation as a 
function of preferred spatial frequency for octave bandwidth (colors) . Stimulus-driven response variance is constant with 
preferred frequency when the matrix is matched to the preferred feature. When the matrix is mismatched, response 
variance decreases with the magnitude of the mismatch. E Response kurtosis is the same as a Gaussian with matched 
weight matrices, but increases with the amount of mismatch. 
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The primary finding, however, is that with narrowband normalization and matched receptive fields, 
responses are approximately Gaussian, mean-zero, and strikingly invariant to the scale of the 
preferred feature. Regardless of the preferred spatial frequency, the response is equally 
statistically reliable. Furthermore, the results indicate that it is exceedingly rare for a neuron to be 
stimulated by its preferred feature in natural scenes. The stimulus-driven response standard 
deviation equals approximately 25% of the maximum response, which means that less than one 
natural stimulus in 10,000 will cause a response within 5% of the neuron’s maximum response.  
 
How should these results inform our thinking about neurophysiological processing of real-world 
signals? The majority of single-unit neurophysiology has focused on characterizing the stimuli to 
which individual neurons respond most strongly. We owe much of our knowledge about the 
response properties of V1 neurons to this approach. But the real-world stimuli that drive neural 
responses most strongly occur only very rarely. To understand the coding problems faced by 
nervous systems in natural viewing, it is critical to understand how neurons respond to the stimulus 
ensemble encountered in the real world. 
 

 
Figure 8. The impact of different receptive field modeling choices on signal-to-noise ratio (SNR). A Model receptive fields 
maximize signal-to-noise ratio (SNR) for stimulus discrimination when the visual angle subtended by the receptive field 
weight matrix matches the visual angle of the preferred feature (on-diagonal receptive fields). When the visual angles are 
mismatched, SNR is lower. B Normalized SNR with broadband normalization. C Normalized SNR with narrowband 
normalization as a function of preferred spatial frequency and the visual angle spanned by the weight matrix. 
 
To summarize the impact of matching the weight matrix to the preferred feature, we plot the signal-
to-noise ratio for stimulus discrimination for a range of preferred features and weight matrix sizes 
(Fig. 8A). There is a substantial advantage i) for narrowband over broadband normalization, and ii) 
for matching the visual angle of the receptive field weight matrix to the visual angle of the preferred 
stimulus feature (Fig. 8B,C). Thus, to maximize the signal-to-noise ratio for stimulus discriminability 
and to achieve scale invariant response statistics to natural stimuli, one should perform 
narrowband normalization with weight matrices that match the receptive field’s preferred feature. 
 
As mentioned earlier, these effects occur because of the nonlinear effects of response 
normalization. The visual angle spanned by the weight matrix determines the size of the image 
region from which the normalization factor is computed. With mismatched matrices, the 
normalization factor is determined from the stimulus contrast in an image region larger than the 
preferred feature, that will likely contain spatial frequencies lower than the preferred frequency. 
Natural images have 1/f amplitude spectra (D. J. Field, 1987); contrast energy at frequencies lower 
than the preferred frequency is likely to dominate and substantially increase the value of the 
normalization factor, thereby decreasing the normalized response. As the mismatch increases, the 
decrease in the normalized response becomes more pronounced, reducing the stimulus-driven 
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response variability associated with high frequency features. The normalization factor should 
therefore be determined from the same image region that is selected for by the preferred feature.  
 
Another way to understand the effects is to consider two nearly identical model neurons that do not 
employ response normalization. Their response drives are equal to   f

Tc  instead of   f
Tc N . The 

neurons prefer the same feature and differ only because one has a mismatched and the other has 
a matched weight matrix. The larger mismatched matrix is padded with zero-valued coefficients. 
Multiplying inputs with zero-valued coefficients does not change the linear response. Both neurons 
will thus produce identical linear responses regardless of whether the matrix is matched. The 
differential effects must therefore be due to the size of the image region that determines the 
normalization factor, relative to the size of the preferred feature of the receptive field.  
 
Downsampling 
The model neuron receptive fields considered thus far have had identical sampling resolution, so 
the number of pixels representing a preferred feature scales with the visual angle spanned by the 
receptive field (Fig. 9A,B). In the primate visual system, at a given eccentricity, simple cells with 
larger receptive fields pool over more relay cell inputs from the lateral geniculate nucleus (LGN) 
than those with smaller receptive fields (Taylor, Sedigh-Sarvestani, Vigeland, Palmer, & Contreras, 
2018). Similarly, parasol ganglion cells in the retina pool over more cone receptors than midget 
ganglion cells (G. D. Field et al., 2010). Sometimes, however, large receptive fields pool inputs that 
have lower sampling resolution than their smaller counterparts. For example, large retinal ganglion 
cells (RGCs) in the retinal periphery pool inputs from large low-resolution cone photoreceptors, 
whereas small foveal RGCs of the same type pool over small high-resolution photoreceptors 
(Croner & Kaplan, 1995; Rossi & Roorda, 2010). The processing motif employed by the peripheral 
retina is roughly equivalent to downsampling, a common pre-processing method in the computer 
vision, image processing, and deep learning communities (Burt & Adelson, 1983). In general, 
downsampling reduces the number of pixels (i.e. sampling resolution) representing a particular 
image patch, and hence the computational requirements for processing that patch.  
 

 
Figure 9. Downsampling cropped images for matched receptive field weight matrices. A Cropped images: big, medium, 
and small. Boxes indicate three different scales at which image data is processed. The cropped images span different 
visual angles but have a fixed sampling rate. Each cropped image therefore has a different number of pixels. B Matched 
receptive field weight matrices. The visual angle spanned by the weight matrix matches the visual angle spanned by the 
preferred feature. Each matrix also has a different number of pixels. C Cropped and downsampled images. Cropped and 
downsampled images span different visual angles, but have the same number of pixels. D Matched and downsampled 
receptive fields. All weight matrices have the same number of pixels, regardless of the spanned visual angle.  
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Figure 10. The impact of downsampling on response statistics. A Stimulus-driven response standard deviation with 
narrowband normalization, blurring, and downsampling. B Stimulus-driven response kurtosis with blurring and 
downsampling. The response statistics are essentially identical with and without downsampling. 
 
We asked how downsampling the input stimuli impacts model neuron response statistics. First, we 
generated a new set of receptive field weight matrices where both the spanned visual angle and 
the sampling resolution were yoked to the preferred feature. The result was a set of receptive fields 
defined by weight matrices that all had an identical number of pixels. Specifically, all weight 
matrices had 18x18 pixels, the same number as the original matrix corresponding for the smallest 
preferred feature (0.3º, 8 cpd). Then, we downsampled the image patches (after appropriate 
blurring to prevent aliasing) to match the sampling resolution of the receptive fields (see Methods). 
Downsampled images and receptive fields are shown in Figure 9C,D. 
 
With downsampling, the narrowband-normalized responses with matched matrices are constant 
variance Gaussian (Fig. 10A,B). The response statistics (i.e. standard deviation and kurtosis) are 
within one percent of the response statistics without downsampling (see Fig. 7DE). There is no 
disadvantage (or advantage) to downsampling in terms of the signal-to-noise for signal 
discrimination. Thus, at least in terms of signal-to-noise for stimulus discrimination, there is no 
pressure on the visual system to avoid downsampling. This result is useful for approaches that 
seek to learn receptive fields via non-parametric methods, where every additional pixel in a 
receptive field weight matrix incurs considerable computational cost (see Discussion).  
 
Discussion 
Model neurons employing narrowband response normalization yield scale-invariant Gaussian 
distributed responses to natural stimuli. The scale-invariant response statistics come close to 
maximizing the signal-to-noise ratio for stimulus discrimination with natural stimuli, but the scale-
invariance depends on the normalization factor being determined from image region that matches 
the size of the receptive field’s preferred feature.	 In the discussion section, we examine how these 
results are affected by receptive fields that are not oriented Gabors, and stimulus types that are not 
natural (i.e. noise stimuli). We discuss how the results reported here can explain why models fitted 
to neurons in cortex tend to poorly predict responses to natural stimuli, even when they beautifully 
predict responses to noise stimuli.   
 
Generality of conclusions 
Different subfields in vision and computational neuroscience have different methodological 
conventions for modeling neurons. Under many simplified circumstances, the different conventions 
have little or no practical impact. However, when the model neurons include the dominant features 
of real neurons in cortex—receptive field, response normalization, and encoding noise—the subtle 
differences in the modeling conventions can have a dramatic impact on their response statistics to 
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natural images. How, then, do modeling choices other than those considered in the body of the 
paper impact the response statistics?  
 
First, we asked whether the response statistics generalize to other Gabor receptive fields. In the 
results section, we analyzed only the response statistics of vertically oriented even-symmetric 
(cosine phase) Gabor receptive fields. Do odd-symmetric (sine phase) receptive fields produce 
similar results? Yes. Gabor receptive fields with all phases and orientations produce equivalent 
results. Thus, model neurons with biologically plausible receptive fields and appropriate 
narrowband response normalization produce response statistics that are invariant to the preferred 
feature. 
 
Next, we asked whether model neurons with other receptive field shapes produce similar results. 
There is a long history of using Gabor functions to describe the receptive fields of simple cells in 
early visual cortex (Jones & Palmer, 1987a; 1987b). However, empirical data suggests that log-
Gabors may provide a better characterization of simple cell receptive fields in early visual cortex 
(De Valois, Albrecht, & Thorell, 1982a; Geisler & Albrecht, 1997; Hawken & Parker, 1987). It has 
also been argued on theoretical grounds that log-Gabor receptive fields may be better than Gabor 
receptive fields for encoding natural images (D. J. Field, 1987). We re-ran our analyses with log-
Gabor shaped receptive fields. All results hold with log-Gabor receptive fields (Fig. S7).  
 
Then, we asked whether the main conclusions hold for the receptive fields like those of retinal 
ganglion cells or relay cells in the lateral geniculate nucleus, which are radially symmetric and do 
not select for orientation. We repeated our analyses with center-surround Gabors and difference-
of-Gaussian (DoG) preferred features embedded in matched weight matrices. Results are quite 
similar for oriented and un-oriented receptive fields with narrowband normalization. However, 
model neurons with un-oriented receptive fields also yield Gaussian response distributions with 
broadband normalization (Fig. S8). (Recall that oriented receptive fields with broadband 
normalization yield Laplace-distributed responses; Fig. 4C,D, Fig. S2) This result implies that the 
differences in the shape of the response distributions that distinguish broadband and narrowband 
normalization with oriented Gabors (c.f. Fig. 4) are due primarily to the orientation selectivity of the 
receptive field.  
 
Natural vs. noise stimuli  
Model neurons with narrowband response normalization and matched weight matrices yield 
Gaussian-distributed responses to natural stimuli. But noise stimuli are more often used in 
psychophysical and neurophysiological experiments because they have useful properties for 
methods designed to recover the stimulus features (i.e. receptive fields) that drive behavioral and 
neural response (Ahumada & Lovell, 1971; Schwartz, Pillow, Rust, & Simoncelli, 2006). 1/f noise 
has the amplitude spectrum but not the phase structure of natural images. White noise has neither 
the amplitude spectrum nor the phase structure of natural stimuli. It is therefore important to ask 
how our model neurons respond to noise stimuli. 
 
We compared linear and normalized model neuron responses to natural, 1/f noise, and white noise 
stimuli. As shown above, linear responses to natural stimuli are distributed with heavier tails than 
Laplace distributions. Broadband-normalized responses to natural stimuli are Laplace-distributed. 
And narrowband-normalized responses to natural stimuli are approximately Gaussian (Figs. S1-3). 
In contrast, linear and broadband responses to Gaussian 1/f and white noise stimuli are Gaussian. 
Narrowband-normalized responses to 1/f and white noise stimuli are also approximately Gaussian 
(Figs. S9,S10). Thus, the differences between linear, broadband-, and narrowband-normalized 
responses are substantial for natural stimuli. The negligible for noise stimuli (Fig. 11).  
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Figure 11. Distributions of linear, broadband-normalized, and narrowband-normalized responses to natural, 1/f noise, 
and white noise stimuli. Linear responses to natural stimuli are very heavy tailed (i.e. heavier than a Laplace distribution; 
see Fig. S1). Broadband responses to natural stimuli are Laplace-distributed (see Fig. S2). Narrowband responses to 
natural stimuli are Gaussian (see Figs. 4, 7, S3). Linear and broadband responses to 1/f and white noise are guaranteed 
to be Gaussian, assuming that the number of pixels defining each stimulus (i.e. dimensionality) is high enough. 
Narrowband responses to noise stimuli are all approximately Gaussian. Narrowband normalization produces responses 
(i.e. response drives) that are very nearly Gaussian with all three stimulus types. Narrowband normalization helps 
standardize the distributional form of the response statistics across stimulus types (box). Narrowband normalization 
should therefore improve the ability of computational models of visual information processing to generalize across 
stimulus types. 
 
These findings provide a clue about why subunit models of neural response tend to generalize 
poorly when tested with natural stimuli. Subunit models are a popular method for performing neural 
systems identification. Their aim is provide a concise computational level description of the input-
output relationship between stimulus and response. Subunit models are typically fit and tested 
using noise stimuli. But even when fitted subunit models nicely predict performance with noise 
stimuli, they tend to perform poorly when tested with natural stimuli (Heitman et al., 2016; Smyth, 
Willmore, Baker, Thompson, & Tolhurst, 2003; Talebi & Baker, 2012).  
 
Subunit models of neural response tacitly assume Gaussian-distributed responses (McFarland, 
Cui, & Butts, 2013; I. M. Park, Archer, Priebe, & Pillow, 2013; Rust, Schwartz, Movshon, & 
Simoncelli, 2005; Schwartz et al., 2006), even though the models do not typically include response 
normalization (but see (McFarland et al., 2013)). However, with Gaussian noise stimuli linear (un-
normalized) response distributions are guaranteed to be Gaussian. (Broadband-normalized 
response distributions to noise stimuli are also guaranteed to be Gaussian, assuming that the 
number of pixels defining each stimulus—i.e. the dimensionality of each stimulus—is sufficiently 
high (Poincaré, 1912).) Thus, the absence of narrowband response normalization has little 
practical effect with the stimuli that subunit models are most often fit and tested. In contrast, with 
natural stimuli, the absence of narrowband response normalization results in response distributions 
that are highly non-Gaussian. The non-Gaussian response distributions violate the tacit 
distributional assumptions of the models. This violation contributes to the poor generalization of 
subunit models to natural stimuli. Incorporating narrowband normalization into these methods for 
neural systems identification will yield Gaussian response distributions for both natural and noise 
stimuli, and should therefore improve the ability of these models to generalize across these 
stimulus types. 
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Non-parametric receptive field learning: Model neuron modeling conventions 
Some areas of computational neuroscience aim to learn populations of receptive fields (i.e. 
preferred features) that optimize a particular goal. The preferred features of these receptive fields 
are typically learned by iteratively updating coefficients (i.e. pixel values) in pursuit of the goal. The 
receptive field weight matrices typically have a fixed number of pixels and span a fixed visual 
angle. This convention is convenient for matrix-based programming languages (e.g. Matlab), but it 
often results in weight matrices that are mismatched to the preferred feature. For example, 
mismatched matrices are commonly reported by papers that fit subunit models to describe the 
stimulus-response properties of neurons early in the visual processing stream (c.f. Fig. 2a in Rust 
et al, 2005; (McFarland et al., 2013; I. M. Park et al., 2013; Samengo & Gollisch, 2013; Schwartz et 
al., 2006; Vintch, Movshon, & Simoncelli, 2015)). Analyses inspired by the efficient coding 
hypothesis seek receptive field populations that efficiently encode natural stimuli also commonly 
report mismatched weight matrices (c.f. Fig. 4a in Olshausen & Field, 1996; (Bell & Sejnowski, 
1997; Lewicki, 2002; Olshausen & Field, 1997; Rehn & Sommer, 2007)). Why are mismatched 
weight matrices commonly reported if they carry the disadvantages detailed in the results section 
(c.f. Fig. 8)? The literatures mentioned above typically assume that receptive field (or subunit) 
responses are driven purely by linear operations; that is, they do not incorporate response 
normalization. (They also do not typically model encoding noise.) In the absence of normalization, 
matched and mismatched matrices yield identical responses (see Results).  
 
To increase biological realism and to facilitate generalization to natural stimuli, normalization 
should be included in the response models for these feature-learning methods and others. When 
normalization is included, the normalization factor must be computed from the same stimulus 
region as the preferred feature. Otherwise, receptive fields with preferred features smaller than the 
visual angle spanned by the weight matrix will have poor signal-to-noise (Fig. 7,8). This will make it 
difficult to interpret the results of feature learning studies. If high frequency features are not 
learned, it will be unclear whether it is because of the poor signal-to-noise or because high 
frequency filters are fundamentally not useful. If receptive fields within a parametric family are 
being learned (e.g. Gabor) the parameters can be used to determine the area spanned by the 
feature, but this is not possible with non-parametric approaches. One way to address this issue 
would be learn receptive fields with localized priors, but this technique poses significant technical 
challenges in many contexts (M. Park & Pillow, 2011). A simpler approach would be to learn 
receptive fields with response normalization at multiple scales simultaneously. At each scale, 
receptive fields with small mismatched preferred features will yield with poor signal-to-noise, 
biasing the learning procedures against selecting those features relative to the scale. But across 
scales, large and small features will both be given a fair chance; large features would be matched 
to large matrices and small features would be matched to small matrices. 
 
Neural response in early visual cortex 
Across many natural images, model neuron response drive is mean zero and Gaussian distributed. 
The response drive is equivalent to the neural response under the assumptions that i) no response 
rectification occurs and ii) that the power of the static output non-linearity is 1.0. In real neurons 
these assumptions do not typically hold. As a consequence, the responses of real neurons in early 
visual to natural stimuli are not Gaussian (Felsen et al., 2005; Weliky et al., 2003). Rather, the 
response drive is typically rectified and the power of static output nonlinearity is close to 2.0 
(Priebe & Ferster, 2008). We examined how rectification and a squaring output non-linearity 
changes the model neuron response statistics. Rectifying and squaring the response drive 
converts the Gaussian response distributions into chi-squared response distributions with one 
degree of freedom   σ E

2 χ1
2  scaled by the stimulus-driven response variance (Fig. 12). The scaled 

chi-squared is more similar to the response distributions observed from spiking neurons in cortex. 
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The scaled chi-squared distribution is equivalently described by a gamma distribution with shape 
and scale parameters of  1/ 2  and   2σ E

2 , respectively. 
 
These considerations make several predictions. First, presenting natural stimuli to simple cells in 
early visual cortex should yield response rate distributions that are nicely modeled by scaled chi-
squared distributions with one degree of freedom. Second, because complex cells are typically 
modeled as resulting from quadratic pooling of two (or more) subunit receptive field responses, 
complex cells should yield response rate distributions that are well modeled by scaled chi-squared 
distributions with two (or more) degrees of freedom. Third, the distribution of response across 
stimuli for different neurons should be approximately invariant to the preferred feature of each 
neuron. We advocate examining the distribution of response across hundreds (or thousands) of 
natural images and comparing their distribution to a chi-squared distribution with variable degrees 
of freedom. 

 
Figure 12. Relating Gaussian response drive statistics to response statistics in cortex. Gaussian responses are first 
rectified to create a half-Gaussian distribution. Rectified responses are then squared to create a scaled chi-squared 
distribution (see text). The scaled chi-squared distribution represents the predicted distribution of response rates to 
natural images by neurons (i.e. simple cells) in early visual cortex. 
 
It is also important to ask how the signal-to-noise ratio for stimulus discrimination would be 
impacted by rectifying and squaring the response drive (i.e. the normalized linear response). If the 
controlling source of encoding noise occurs after rectification and squaring, signal-to-noise would 
be altered (Eq. 7A). On the other hand, if the controlling source of encoding noise is added at the 
level of the response drive, before the rectification and squaring (Eq. 7B), the signal-to-noise for 
stimulus discrimination will be unaffected because a monotonic transform of a noisy signal together 
will not alter the signal-to-noise ratio (Pelli, 1985; Rieke & Rudd, 2009).  
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A number of influential models in the neurophysiological literature propose that the controlling 
source of encoding noise is at the level of the membrane voltage, and should be modeled as 
constant, additive, and zero mean (Carandini, 2004; Mohanty, Scholl, & Priebe, 2012; Priebe & 
Ferster, 2008). After rectification and squaring, the noisy voltage signal predicts Poisson-like 
encoding noise (i.e. response variance that scales with the mean response to each stimulus) like 
that typically observed in cortex (Tolhurst, Movshon, & Dean, 1983b). If these models are correct, 
the controlling encoding noise should modeled as occurring at the level of the response drive (Eq. 
7B). Lastly, these considerations make one an additional prediction. If the intracellular voltage 
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reflects the response drive as it has been discussed in this manuscript, the distribution of 
intracellular voltages across the natural stimulus ensemble should be Gaussian distributed. 
 
Task specific analysis of natural images and scenes 
Efficient coding is an influential theoretical framework for thinking about how neural systems 
encode natural stimuli (Attneave, 1954; Barlow, 2001). Many papers have focused on learning 
receptive fields that efficiently reconstruct proximal stimuli (Bell & Sejnowski, 1997; Lewicki, 2002; 
Olshausen & Field, 1996; 1997). However, the sensory-perceptual systems of humans and other 
animals must do more than efficiently encode and reconstruct sensory inputs. Sensory-perceptual 
systems must extract information from input stimuli that is useful for the behavioral tasks that 
organisms must perform to survive and reproduce. Efficient coding does not directly address this 
problem. 
 
In recent years, statistical techniques have been developed that learn small populations of 
receptive fields that encode the stimulus features most useful for specific tasks (Burge & Jaini, 
2017; Geisler, Najemnik, & Ing, 2009; Jaini & Burge, 2017). These techniques have helped to find 
the optimal solutions in tasks useful for estimating the three-dimensional structure of the 
environment—focus error estimation (Burge & Geisler, 2011; 2012), disparity estimation (Burge & 
Geisler, 2014), and retinal motion estimation (Burge & Geisler, 2015)—and that have been the 
focus of intense study for decades by the vision and neuroscience communities (Banks, 
Gepshtein, & Landy, 2004; Burge, Fowlkes, & Banks, 2010; Burge, Peterson, & Palmer, 2005; 
Cormack, Stevenson, & Schor, 1991; Flitcroft, 1990; Gekas, Meso, Masson, & Mamassian, 2017; 
Held, Cooper, & Banks, 2012; Iyer & Burge, 2018; Jogan & Stocker, 2015; Kotulak & Schor, 1986; 
Kruger, Aggarwala, Bean, & Mathews, 1997; Priebe & Lisberger, 2004; Priebe, Cassanello, & 
Lisberger, 2003; Rust, Mante, Simoncelli, & Movshon, 2006; Sebastian, Burge, & Geisler, 2015; 
Simoncelli & Heeger, 1998; Tyler & Julesz, 1978; Weiss, Simoncelli, & Adelson, 2002). In this 
manuscript, we examined only the response statistics of individual model neurons and considered 
only performance in a very simple task: discriminating one stimulus from another. The optimal 
solutions to these more sophisticated tasks require combining the responses from multiple 
receptive fields. With appropriate normalization, responses to natural stimuli from multiple 
receptive fields are jointly Gaussian, a fact that should simplify computations for optimally 
combining those receptive field responses. Thus, the results reported here should be thought of as 
the beginning of a more complete investigation of how visual systems process natural stimuli. 
Having an accurate picture of the response statistics of model neurons, and understanding how 
small differences in modeling conventions affect those response statistics, lay an important 
foundation for building principled models in the future.   
 
Conclusion 
The work presented in this manuscript suggests that computational models of neural processing 
should incorporate narrowband (i.e. stimulus- and feature-specific) response normalization. A 
simple expression for computing the narrowband normalization factor is provided, that should 
facilitate the inclusion of narrowband normalization in non-parametric methods for learning 
receptive fields of model-neuron-like units. Narrowband normalization should also improve the 
ability of such models to generalize from noise stimuli to natural stimuli, because narrowband 
normalization yields scale invariant Gaussian responses for both natural and noise stimuli.  
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Methods 
Natural stimuli: Natural image patches were sampled from two recently published photographic 
databases of natural scenes (Burge & Geisler, 2011; Burge, McCann, & Geisler, 2016). Scenes 
were photographed on and around the University of Texas at Austin campus and contained grass, 
shrubs, and trees, and streets, cars, and buildings. The images were calibrated such that the 
intensity values were linear with luminance. The data represents 30,888 unique 1.2º image patches 
(72x72 pixels); 312 non-overlapping patches were randomly selected from each of 99 calibrated 
natural images.  
 
Local contrast: The intensity patches are converted to Weber contrast images by luminance 
normalization. The contrast image is obtained by subtracting off and dividing by the local mean 
intensity 
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where 

 
c x( )  is the local contrast image patch,   I x( )  is the local intensity image patch,  I  is the local 

mean intensity, and    x = x, y{ }  indexes spatial position in the area  A  spanned receptive field weight 

matrix. The local mean intensity is given by 
  
I = I x( )⎡⎣ ⎤⎦

x∈A
∑ .  

 
Receptive fields: The receptive field of each model neuron is modeled with a weight matrix. The 
receptive field weight matrix is determined by the preferred feature, the visual angle spanned by 
the weight matrix, and by the spatial sampling rate. The preferred feature of each model neuron is 
modeled as a Gabor. A Gabor is a cosine wave multiplied by a Gaussian envelope 
 
 

   
f x( ) = gauss ′x , ′y ;x0 , y0 ,θ0,σ b ,σ l( )cos 2π f0 ′x +φ0( )       (9) 

 
where   x0  and   y0  specify the position of the Gaussian envelope,  θ0  is the preferred orientation,  σ b   
is the standard deviation of the envelope in the band pass direction (orthogonal to the grating 
orientation),  σ l  is the standard deviation of the envelope in the low pass direction (parallel to the 

grating orientation),   f0  is the preferred spatial frequency,  φ0  is the preferred phase, and   ′x , ′y{ }   
are transformed coordinates due to the preferred orientation  
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The coefficients of the receptive field weight matrix are normalized such that the L2 norm of the 

receptive field weight coefficients 
  
f x( ) = f x( )2

x
∑  equals 1.0. The octave bandwidth of the 

preferred feature is given by the log-base-two ratio of the high and low frequencies at half-height 
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The orientation bandwidth specifies the polar angle spanned by the Gaussian envelope at half-
height and is given by  
 

  
BWθ = 2 tan−1 ln4

2πσ l f0

⎛

⎝
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⎠
⎟          (12) 

 
When the visual angles spanned by the  ′x  and  ′y  values are 5x the envelope standard deviations 
in the band pass and low pass directions, respectively, the weight matrix is matched to the 
preferred feature. When the spanned visual angles are greater than 5x the standard deviation in 
either the band pass or low pass direction, the weight matrix is mismatched to the receptive field.  
 
We analyze the response statistics of model neurons with vertically-oriented Gabor receptive fields 
having 42º orientation bandwidths and 0.8, 1.2, and 1.8 octave bandwidths. Simple cells in early 
visual cortex have a median orientation bandwidth of 42º, a median octave bandwidth of 1.2 
octaves. The distribution of cortical octave bandwidths spans approximately 0.8 to 1.8 octaves at 
half-height (De Valois, Albrecht, & Thorell, 1982a; De Valois, Yund, & Hepler, 1982b). We 
computed response statistics for mismatched receptive field weight matrices spanning 5x (e.g. 2 
cpd, 72 pixels, 1.2º) to 20x (e.g. 8 cpd, 72 pixels, 1.2º) the envelope standard deviations. 
 
The aspect ratio of the Gaussian envelope in terms of the octave and orientation bandwidths is 
obtained by solving Eqs. 11 and 12 for  σ b   and  σ l , respectively, and then taking the ratio 
  

  

AR =
σ l

σ b

=
2BWoct −1( )

2BWoct +1( ) tan
BWθ

2
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⎞
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       (13) 

 
The log-base-two aspect ratios 

  log2 AR( ) of these receptive fields are -0.5, 0.0, and 0.5, 

respectively, which correspond to envelopes that are wider than high by a factor of  2 , circular, 
and higher than wide by a factor of  2 , respectively.  
 
All data in the main text is presented for rectangular image patches and receptive field weight 
matrices. However, there are practical disadvantages to working with matrices that are rectangular. 
It is more convenient to work with square patches and weight matrices. We examined how the 
response statistics differ between rectangular and square weight matrices. Note that nominally 
matched square matrices are actually slightly mismatched for octave bandwidths other than 1.2. 
We computed the response statistics with square image patches and weight matrices for all octave 
bandwidths. The differences were minor (Fig. S11). 
 
Normalization: To obtain the normalization factor for each stimulus, we converted each contrast 
image into its frequency domain representation by performing a fast-fourier transform (FFT). Next, 
we normalized the transform such that its total power equaled the total energy of the contrast 
image, in accordance with Parseval’s theorem. To prevent high-frequency artifacts that may be 
caused by the edge of the image patch, it is common to apply a cosine window before performing 
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the FFT. However, because of numerical issues, it is impossible to avoid occasionally exceeding 
the maximum response   rmax  when a window is applied. Stimulus energy near the edge of the 
image patch that increases the linear response, may be windowed out of the normalization factor. 
In this case, the normalization factor will be smaller than it should be. In some cases, it will cause 
the normalized response to exceed the maximum. Results were similar with and without 
windowing, but they were better behaved without windowing.  
 
Encoding noise: The responses of neurons are noisy. If the same exact stimulus is presented 
multiple times, the neuron is likely to give a slightly different response to each presentation. We 
considered two types of encoding noise: constant additive noise and scaled additive noise. Both 
types were modeled as mean zero Gaussian noise 

  
ε ~ N 0,σ I

2( ) . With constant additive noise, the 

encoding noise variance   σ I
2  is constant regardless of the mean response. With scaled additive 

noise, the encoding noise variance   σ I
2 =α r +σ 0

2  scales in rough proportion to the mean, where α  
is the fano factor. All of the qualitative results are essentially invariant to whether constant or 
scaled additive noise is used. The manuscript presents results for constant additive noise. 
 
Downsampling: Image patches were downsampled using Matlab’s imresize.m function with linear 
interpolation. Similar results are obtained using Matlab’s impyramid.m. However, with impyramid.m 
the downsampling factors are restricted to powers of two; we favor imresize.m because of its 
increased flexibility. Other downsampling methods are likely to produce very similar results. 
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Figure S1. Linear receptive field responses to natural images for all preferred spatial frequencies (columns) and octave 
bandwidths (rows). Note the dramatic difference in response magnitude (x-axis) as a function of preferred frequency. The 
responses are fit with both a Laplace and a generalized Gaussian via maximum likelihood (gray & black curves, 
respectively). The best-fit generalized Gaussian fit has significantly heavier tails than the best fit Laplace in all cases. The 

generalized Gaussian is given by 
  
p R( ) ∝ exp − R /σ

p⎡
⎣

⎤
⎦  where the Laplace distribution ( p  =1.0 ) and the Gaussian ( p

=2.0 ) are special cases. The linear responses are best fit with powers  p  of between 0.62 and 0.70, with a mean power 
of 0.65. The y-axis indicates log-probability over a four order-of-magnitude range. The Laplace fit appears as straight 
lines on a log-probability plot. 
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Figure S2. Broadband-normalized responses to natural images are Laplace distributed. Broadband responses with 
matched receptive field weight matrices for all preferred spatial frequencies (columns) and octave bandwidths (rows). 
The responses are fit with both a Laplace and a generalized Gaussian via maximum likelihood (gray & black curves, 

respectively). The generalized Gaussian is given by 
  
p R( ) ∝ exp − R /σ

p⎡
⎣

⎤
⎦  where the Laplace distribution ( p  =1.0 ) 

and the Gaussian ( p =2.0 ) are special cases. The generalized Gaussian fit is indistinguishable from the Laplace fit in 
almost all cases; when the gray lines are not visible, it is because they are lying behind the black curve. The y-axis 
indicates log-probability over a three order-of-magnitude range. The Laplace fit appears as straight lines on a log- 
probability plot. 
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Figure S3. Narrowband-normalized responses to natural images are Gaussian-distributed. Narrowband responses with 
matched receptive field weight matrices for all preferred spatial frequencies (columns) and octave bandwidths (rows). 
The responses are fit with both a Gaussian and a generalized Gaussian via maximum likelihood (gray & black curves, 

respectively). The generalized Gaussian is given by 
  
p R( ) ∝ exp − R /σ

p⎡
⎣

⎤
⎦  where the Laplace distribution ( p  =1.0 ) 

and the Gaussian ( p =2.0 ) are special cases. The generalized Gaussian fit is indistinguishable from the Gaussian fit in 
almost all cases; when the gray lines are not visible, it is because they are lying behind the black curve. The y-axis 
indicates log-probability over a three order-of-magnitude range. The Gaussian distribution appears as an upside-down 
parabola on a log-probability plot. 
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Figure S4. The impact of the shapes of the response distributions and the type of encoding noise on SNR. A The impact 
of the shape of the response distribution on signal-to-noise ratio for stimulus discriminability, assuming constant encoding 
noise. We computed expected SNR for a set of simulated generalized Gaussian response distributions having identical 

means and variances but different powers. The generalized Gaussian is given by 
  
p R( ) ∝ exp − R

lin
/σ

p⎡
⎣

⎤
⎦ .  The Laplace 

distribution ( p  =1.0; kurtosis = 6.0) and the Gaussian ( p =2.0; kurtosis = 3.0) are special cases. Powers larger than 2.0 
approach the uniform distribution. B Expected SNR for  broadband-normalized responses as a function of the response 
for constant (solid curve) and Poisson-like (dashed curve) encoding noise. The histogram shows the distribution of 
stimulus-driven broadband response. The constant Gaussian encoding noise was set such that the expected SNR from 
the broadband responses across the stimulus ensemble was equal to 1.0 (i.e.   σ I

≅ σ
E

3 ). The Poisson-like is encoding 

noise is given by   σ I
= α R +σ

0

2   where α  is the fano factor and  σ 0

2  are the fano factor and baseline variance, 

respectively. The values of the fano factor and the baseline variance were taken from the neurophysiological literature. 
Finally, the mean Poisson-like encoding noise variance across the stimulus ensemble was matched to the constant 
encoding noise variance. SNR for stimulus discrimination is approximately 4% lower with Poisson-like encoding noise.  C 
Expected SNR for narrowband-normalized responses as a function of the response. The mean encoding noise variance 
was matched to the mean encoding noise for the broadband responses. SNR for stimulus discrimination is approximately 
8% lower with Poisson-like encoding noise.   D Summary of expected SNR improvement for broadband and narrowband 
normalization, with constant and Poisson-like encoding noise. 
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Figure S5. The impact of narrowband normalization. A Proportion that the narrowband response is larger than the 
broadband response  Rnrw

R
brd

 as a function of the broadband response. Same data as Figure 5B in the main text.       B 

Distribution of the proportional increase   p R
nrw

R
brd

| R
brd

( )  in the narrowband response relative to the broadband 
response, conditioned on different absolute values of the broadband response (colors), as fit by inverse gamma 
distributions. Arrows in A mark the absolute values of broadband response upon which the proportions are conditioned. 
Same data as Figure 5C in the main text.  C Maximum likelihood fits of inverse gamma distributions to the distributions of 
proportional increase for five absolute values of the broadband response. Small broadband responses tend to be 
amplified more than large broadband responses. Note that the proportional increase on the x-axis in each of the five 
panels ranges, respectively, from 1.2x to 33x, 1.2x to 9x, 1.2x to 4.5x, 1.2x to 3.0x, and 1.2x to 2.4x, respectively. 
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Figure S6. Response statistics with Gabor receptive fields, broadband normalization, and matched and mismatched 
rectangular weight matrices. A Stimulus-driven response standard deviation is invariant to preferred frequency when the 
receptive field’s weight matrix is matched to the preferred feature (solid curves). Response standard deviation decreases 
systematically as the magnitude of the mismatch increases (dashed curves). B Stimulus-driven response kurtosis is 
consistent with a Gaussian when the weight matrix is matched to the preferred feature, but increases systematically as 
spatial frequency (and the magnitude of the mismatch) increases. Decreased stimulus-driven response variation (A) and 
increased response kurtosis (B) both decrease the signal-to-noise ratio for stimulus discrimination (Fig. S4). 
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Figure S7. Log-Gabor receptive fields and response statistics. A Log-Gabor receptive fields with octave bandwidths of 
0.8, 1.2, and 1.8, and orientation bandwidths of 42º. Different octave bandwidths correspond to preferred features with 
different aspect ratios (see Methods). The receptive fields   B Mismatched and C matched receptive field weight matrices 
with 1.2 octave bandwidth for five preferred spatial frequencies. D Response distributions from matched and mismatched 
matrices. Matched weight matrices (solid curves) yield response distributions that are invariant to the scale of the 
preferred feature. Mismatched weight matrices (dashed curves) yield response distributions that change shape and 
variance with the magnitude of the mismatch. E Response standard deviation. Stimulus-driven response variance is 
constant with preferred frequency when the matrix is matched to the preferred feature. When mismatched, response 
standard deviation decreases with the magnitude of the mismatch. F Response kurtosis is the same as a Gaussian with 
matched weight matrices, but increases with the magnitude of the mismatch. Log-Gabor and Gabor response statistics 
are similar (see Fig. 7 in the main text). 
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Figure S8. Response statistics for radial Gabor receptive fields with narrowband and broadband normalization. A 
Radially symmetric Gabor receptive field, similar to ganglion cell receptive fields in retina and relay cell receptive fields in 
lateral geniculate nucleus. B Schematic of pooling region in frequency space that determines the narrowband 
normalization factor. C Stimulus-driven response standard deviation with narrowband normalization for three different 
octave bandwidths (colors). D Stimulus-driven response kurtosis with narrowband normalization. E Response standard 
deviation with broadband normalization. F Response kurtosis with broadband normalization. Narrowband and broadband 
response statistics are more similar with radial Gabor receptive fields than with oriented Gabor receptive fields. 
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Figure S9. Response statistics to 1/f noise stimuli. Results are plotted for narrowband normalization with matched and 
mismatched weight matrices. A Example 1/f noise stimuli. 1/f noise stimuli were matched in contrast to the natural 
stimuli. B Stimulus-driven response standard deviation with narrowband normalization. C Stimulus-driven response 
kurtosis with narrowband normalization. Regardless of whether the matrices are matched or mismatched, the response 
kurtosis is consistent with a Gaussian. Note that it may appear surprising that with narrowband normalization, 1/f noise 
yields similar stimulus-driven response variance as the natural stimuli. (Broadband-normalized responses are 
substantially smaller with noise than with natural stimuli; see D). This is because our modeling assumes that the 
normalization factor is computed noiseless. This is not plausible for biological systems. Adding a small constant   N0

  to 

the normalization term changes the response model to   Rnrw = f Tc Nnrw + N
0( )  and causes a substantial reduction in the 

stimulus-driven response variance to noise stimuli while leaving stimulus-driven response variance to natural stimuli 
relatively unaffected. The small constant has a larger effect on the response variance to noise stimuli because the 
(noiseless) narrowband normalization factor (i.e. similarity) tends to be much smaller for noise than for natural stimuli. 
Provided the constant is small enough, its addition to the response model does not appreciably change the distributional 
shape of the narrowband response distributions. D Response standard deviation with broadband normalization. The 
slight uptick in response standard deviation for the smaller matched matrices vanishes with downsampling. This increase 
is the only substantive difference we observed with downsampling. E Response kurtosis with broadband normalization. 
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Figure S10. Response statistics to white noise stimuli. Results are plotted for narrowband normalization with matched 
and mismatched weight matrices. A Example 1/f noise stimuli. White noise stimuli were matched in contrast to the 
natural stimuli. B Stimulus-driven response standard deviation with narrowband normalization. C Stimulus-driven 
response kurtosis with narrowband normalization. Regardless of whether the matrices are matched or mismatched, the 
response kurtosis is consistent with a Gaussian. Note that it may appear surprising that with narrowband normalization, 
white noise yields similar stimulus-driven response variance as the natural stimuli. (Broadband-normalized responses are 
substantially smaller with noise than with natural stimuli; see D). This is because our modeling assumes that the 
normalization factor is computed noiseless. This is not plausible for biological systems. Adding a small constant   N0

  to 

the normalization term changes the response model to   Rnrw = f Tc Nnrw + N
0( )  and causes a substantial reduction in the 

stimulus-driven response variance to noise stimuli while leaving stimulus-driven response variance to natural stimuli 
relatively unaffected. The small constant has a larger effect on the response variance to noise stimuli because the 
(noiseless) narrowband normalization factor (i.e. the similarities) tends to be much smaller for noise than for natural 
stimuli. Furthermore, because the phase-invariant similarity of white noise stimuli is lower than the phase-invariant 
similarity of 1/f noise stimuli to the receptive field, the constant drives down the stimulus-driven response variance to 
white noise stimuli more than to 1/f stimuli. Provided the constant is small enough, its addition to the response model 
does not appreciably change the distributional shape of the narrowband response distributions. D Response standard 
deviation with broadband normalization. The slight uptick in response standard deviation for the smaller matched 
matrices vanishes with downsampling. This increase is the only substantive difference we observed with downsampling. 
E Response kurtosis with broadband normalization. 
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Figure S11. Response statistics with square weight matrices, which are often more convenient for modeling. Preferred 
features with different octave bandwidths have different aspect ratios. Thus, nominally matched square matrices are 
actually slightly mismatched for preferred features having octave bandwidths other than 1.2 (see Methods). A Preferred 
features in square weight matrices. B Stimulus-driven response standard deviation with narrowband normalization. 
Results for ‘matched’ square matrices are similar to the results with matched rectangular weight matrices presented in 
the main text. However, the 0.8 octave bandwidth preferred feature yields slightly higher stimulus-driven response 
variance and the 1.8 octave bandwidth feature yields slightly lower stimulus-driven variance than their rectangular 
counterparts. C Stimulus-driven response kurtosis with narrowband normalization. Results are very similar with square 
and rectangular weight matrices. D Response standard deviation with broadband normalization. E Response kurtosis 
with broadband normalization. Square weight matrices yield broadly similar results as rectangular weight matrices, and 
can probably be used for many applications interchangeably with rectangular matrices. 
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Supplement 1 
Expected stimulus discriminability for Gaussian response distributions 

 
Consider a neuron whose response can be modeled as a zero-mean Gaussian-distributed random 
variable  r  with standard deviation  σ E  such that 

   
r ∼ N 0,σ E

2( )            (S1) 

 
Let   r1  and   r2 be two random response samples. The response difference   u = r1 − r2  is also 
Gaussian distributed with a variance that is twice the variance of each of the i.i.d. responses 
 

  
u ~ N 0,2σ E

2( )           (S2) 

 
We are interested in the expected absolute difference 

  
E u⎡⎣ ⎤⎦ = E r1 − r2

⎡⎣ ⎤⎦  of two random 

responses. In general, the absolute value of a zero-mean Gaussian distributed random variable 

with variance  σ
2  obeys a half-normal distribution with mean 

 

2
π
σ  . 

 
Given that   u = r1 − r2  is a zero-mean Gaussian variable with variance   2σ E

2  , we have 

  
E r1 − r2
⎡⎣ ⎤⎦ =

2
π

2σ E = 2
π
σ E         (S3) 

 
If the neuron’s response is corrupted by encoding noise of variance   σ I

2  , then the expected 
discriminability across stimuli for this neuron is given by 

  

  
E SNR⎡⎣ ⎤⎦ =

E r1 − r2
⎡⎣ ⎤⎦
σ I

= 2
π
σ E

σ I

          (S4) 
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Supplement 2 
Expected stimulus discriminability for Laplace response distributions 

 
Consider a neuron whose response can be modeled as a zero-mean Laplace-distributed random 
variable  r  with standard deviation  σ E  such that 

   
r ∼ f r( ) = 1

2σ E

e
−

r

σ E 2 ,−∞ < r < ∞        (S5) 

 
Let   r1  and   r2 be two random response samples. The response difference   u = r1 − r2   is the 

difference of two i.i.d. responses. Let   u ∼ g u( )  

 
g u( ) = f x( )

−∞

∞

∫ f x − u( )dx

 

  

g u( ) = 1
2σ E

e
−

x

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟−∞

∞

∫
1

2σ E

e
−

x−u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dx  

  
g u( ) = 1

2σ E
2 e

−
x + x−u

σ E 2

−∞

∞

∫ dx                              (S6) 

 
The integral cannot be simply evaluated with an absolute value in the integrand. To remove the 
absolute value from the integrand, we split the integral depending on the values that  u   and  x  
take. We note that  g u( ) is even symmetric. Thus, solving the integral for all values of   u > 0   will 
provide the solution to the integral for all values of   u < 0 . Assuming that   u > 0 , then 

  x + x − u = u − 2x  when   −∞ < x < 0 ,  x + x − u = u  when   0 < x < u , and   x + x − u = 2x − u  when 

 u < x < ∞ . Evaluating for cases when   u > 0  yields 

  

g u( ) = 1
2σ E

2 e
2x−u

σ E 2

−∞

0

∫ dx + e
− u
σ E 2

0

u

∫ dx + e
−2x+u
σ E 2

u

∞

∫ dx
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,                  u > 0

        = 1
2σ E

2

σ E

2 2
e

2x−u
σ E 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−∞

0

+ xe
−u

σ E 2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

u

+
−σ E

2 2
e

−2x+u
σ E 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u

∞⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,   u > 0

        = 1
2σ E

2

σ E

2 2
e

−u
σ E 2 + ue

−u
σ E 2 +

σ E

2 2
e

−u
σ E 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,                     u > 0

                            

  

        = 1
2σ E

2

σ E

2
e

−u
σ E 2 + ue

−u
σ E 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,                                            u > 0    (S7) 

Given that  g u( ) is even-symmetric, we can replace  u  with  u  in Equation S7 

  

g u( ) = 1
2σ E

2

σ E

2
e

− u

σ E 2 + u e
− u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                             (S8) 
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After distributing the leading scale factor   1/σ E
2  and rearranging terms, we obtain an function where 

the two terms in the sum are the expressions for a Laplace distribution and a bilateral Gamma 
distribution 

   

g u( ) = 1
2

1

2σ E

e
− u

σ E 2

Laplace distribution! "## $##

+ 1

2σ E

u

σ E 2
e

− u

σ E 2

Bilateral Gamma Distribution! "### $###⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     (S9) 

Recall that we are interested in the expectation of the absolute value of   u = r1 − r2  , not the 

expectation of   u = r1 − r2  itself. Computing the expectation 
 
E u⎡⎣ ⎤⎦  using  g u( )  from the definition of 

expectation 

 
E u⎡⎣ ⎤⎦ = u

−∞

∞

∫ g u( )du   

  

E u⎡⎣ ⎤⎦ =
1
2

u
−∞

∞

∫
1

2σ E

e
− u

σ E 2 + 1
2σ E

u

σ E 2
e

− u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

du  

 
Noting that the integrand is an even function means that twice the integral from zero to infinity 
equals the integral from negative infinity to infinity 
 

  

E u⎡⎣ ⎤⎦ =
u

2σ E

e
− u

σ E 2 + 1
σ E

2 u
2
e

− u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

∞

∫ du  

 
On the positive real line, we can drop the absolute value symbols 

  

E u⎡⎣ ⎤⎦ =
u
2σ E

e
−u

σ E 2 + 1
σ E

2 u2e
−u

σ E 2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟0

∞

∫ du

 

Splitting the integral

 

  
E u⎡⎣ ⎤⎦ =

1
2σ E

ue
−u

σ E 2 du +
0

∞

∫
1
σ E

2 u2e
−u

σ E 2 du
0

∞

∫      (S10) 

 
Each of the two definite integrals in equation S6 can be computed with the standard result 
 

  
une−au du = n!

an+1 ,n∈W ,a > 0
0

∞

∫   
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Plugging in 
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⎢
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⎥
⎥
⎥

 

 
Simplifying terms 
 

  

E u⎡⎣ ⎤⎦ =
1

2σ E

σ E
2

2
⎡

⎣
⎢

⎤

⎦
⎥ +

1
σ E

2

2σ E
3

2 2

⎡

⎣
⎢

⎤

⎦
⎥

          =
σ E

2 2
+
σ E

2

          = 3
2 2

σ E

 

 
 
Therefore, the mean absolute difference between two i.i.d. mean-zero Laplace random variables of 
standard deviation  σ E  is               

  
E u⎡⎣ ⎤⎦ = E r1 − r2

⎡⎣ ⎤⎦ =
3

2 2
σ E        (S11) 

 
For internal noise of standard deviation  σ I , the expected stimulus discriminability across all stimuli 
is given by 

  
E SNR⎡⎣ ⎤⎦ =

E r1 − r2
⎡⎣ ⎤⎦
σ I

= 3
2 2

σ E

σ I

       (S12) 
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