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ABSTRACT 
Visual systems estimate the three-dimensional (3D) structure of scenes from information in two-
dimensional (2D) retinal images. Visual systems use multiple sources of information to improve 
the accuracy of these estimates, including statistical knowledge of the probable spatial 
arrangements of natural scenes. Here, we examine how 3D surface tilts are spatially related in 
real-world scenes, and show that humans pool information across space when estimating 
surface tilt in accordance with these spatial relationships. We develop a hierarchical model of 
surface tilt estimation that is grounded in the statistics of tilt in natural scenes and images. The 
model computes a global tilt estimate by pooling local tilt estimates within an adaptive spatial 
neighborhood. The spatial neighborhood in which local estimates are pooled changes according 
to the value of the local estimate at a target location. The hierarchical model provides more 
accurate estimates of groundtruth tilt in natural scenes and provides a better account of human 
performance than the local model. Taken together, the results imply that the human visual 
system pools information about surface tilt across space in accordance with natural scene 
statistics. 
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INTRODUCTION 
Estimating three-dimensional (3D) surface orientation from two-dimensional (2D) retinal images 
is one of the most critical functions of human vision [1]. To determine whether a surface can be 
walked on or used to hang a picture, its 3D orientation must be accurately estimated. Laboratory 
studies have typically examined the estimation of 3D orientation with isolated planar surfaces 
that are textured with simple patterns [2-13]. However, the estimation problem in the real world 
is often more complex than situations that are commonly studied in the lab. Real-world surfaces 
have varied textures and complicated geometries [14-16]. To understand how the estimation of 
3D surface orientation works in the real world, it can be useful to study performance with stimuli 
that are as natural as possible. In images of natural scenes, statistical information about local 
image cues and the most probable three-dimensional spatial contexts can both provide useful 
information. In a variety of visual tasks with artificial stimuli, the spatial (i.e., global) context 
surrounding a given set of local cues can affect local percepts [17-21]; well known examples 
include the simultaneous contrast illusion, the simultaneous color contrast illusion, and the slant 
contrast illusion [22,23]. But it is not always clear how to account for these effects. The 
computer vision literature frequently models the use of spatial context, but infrequently provides 
insights into the computations that may underlie human performance [24]. In the vision 
literature, there have been attempts to develop quantitative models that capture the impact of 
spatial context on human perception, but the stimuli that these models apply to are often rather 
artificial [6,25]. There have also been multiple demonstrations that global context influences 
human perception of surface orientation in real-world 3D scenes [26], but these studies typically 
do not provide quantitative models that account for human performance. 

 
Figure 1. 3D surface orientation is fully described by slant and tilt. Slant is the angle indicating how much a surface is 
rotated out of the fronto-parallel plane. Tilt is the direction of slant, as quantified by the angle between the x-axis in 
the frontoparallel plane and the surface normal projected into the frontoparallel plane.  A Signed tilt, defined on 

 [0º ,360º ) , and unsigned slant. B Unsigned tilt, defined on  [0º ,180º ) , and signed slant.  
 
In this paper, we examine how humans incorporate spatial context to estimate 3D surface 
orientation in real-world scenes. Surface orientation is typically parameterized by slant and tilt 
[27]. Slant is the amount by which a surface is rotated away from an observer. Tilt is the 
direction in which the surface is rotated (Fig. 1). The current study focuses on the role of spatial 
context on tilt estimation. To use spatial context, visual systems must integrate (or pool) 
information across space. To model this pooling process, we propose a two-stage hierarchical 
model. In the first stage, 3D tilt is estimated at each of multiple spatial locations, using the joint 
statistics relating local cues in images to groundtruth tilts in natural scenes [15,16]. At each 
spatial location, the estimate is Bayes-optimal given measurements of three local image cues: 
local gradients of luminance, texture, and disparity. This estimate is referred to as a local-model 
estimate because it is based on local cues only. In the second stage, the local estimates are 
pooled across multiple spatial locations to obtain a global-model estimate. The global pooling 
rules are motivated by how tilts are spatially related in real-world scenes.  
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We examine the ability of the global model i) to estimate tilt in real-world scenes and ii) to 
predict human estimation of tilt in those same scenes. We find that the global pooling model 
provides more accurate estimates of tilt and better predictions of human performance than the 
local model. Additionally, we find that the size of pooling region that optimizes estimation 
performance is approximately the same as the size of the pooling region that optimizes the 
model predictions of human performance. The results suggest that the human visual system 
pools information over the spatial region that optimizes tilt estimation performance in natural 
scenes.  
 
RESULTS 
Natural scene statistics of tilt 
In images of natural scenes, 3D surface orientations corresponding to nearby image locations 
are correlated. This is because natural scenes tend to be dominated by continuous surfaces, 
and surface discontinuities tend to be comparatively rare [28]. Visual systems that internalize 
and properly use the statistics governing these spatial relationships in natural scenes will 
outperform visual systems that do not. These scene statistics motivate the global pooling rules 
that are the primary focus of the paper.  
 
To determine how surface tilts in real-world scenes are related across space, we analyzed a 
recently published database of natural stereo-images with precisely co-registered time-of-flight 
laser-based distance measurements at each pixel [15] (Fig. 2A). Groundtruth surface tilt was 
computed from the distance measurements at each pixel (Fig. 2B; see Methods).  
 
The rules for pooling information across space that maximize estimation performance depend 
critically on how the variable to be estimated (e.g. tilt) is correlated across space. Unfortunately, 
the correlation of circular (i.e., angular) variables is notoriously unstable when the variables are 
highly dispersed, and it is known that local tilt in natural scenes is a highly dispersed circular 
variable [16]. This fact makes it difficult to precisely link measured scene statistics to optimal 
pooling rules. Thus, rather than to quantitatively specify the optimal pooling rules from first 
principles, we used the available natural scene statistics to motivate an exploration of plausible 
pooling rules. 
 

As alternative to spatial correlation, we computed the mean absolute tilt difference 
 
E τ i −τ j
⎡
⎣

⎤
⎦  

between tilts corresponding to image locations  i  and  j . (Note that, in the main text, we use 

 τ i −τ j  as notational shorthand for the circular distance between two angles; see Methods). 

Figure 2C shows the mean absolute tilt differences
   
E τ i −τ 0
⎡⎣ ⎤⎦  in natural scenes for all possible 

spatial relationships in a spatial neighborhood surrounding the target tilt  τ 0  at the center of an 
image region. Unsurprisingly, the tilt differences increase systematically as spatial distance 
increases; the iso-difference contours are approximately circular. This finding suggests that 
pooling local tilt estimates within a circular neighborhood centered on the target tilt will increase 
estimation accuracy (see below). 
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Figure 2. Spatial statistics of tilt in natural scenes.  A Stereo images and stereo distance maps of real-world scenes. 
The distance data is co-registered to the image data at each pixel. B Groundtruth tilt corresponding to the image in A. 
Groundtruth tilt at each pixel is computed directly from the data in the distance maps. C Mean absolute tilt difference 
from the center target tilt as a function of spatial location. The color represents the tilt difference across all pixels in all 
images in the natural scene database. D Mean absolute tilt difference conditioned on the groundtruth tilt at the target 
location.  

Richer statistical structure is revealed when the tilt differences are conditioned on the central 
target tilt (i.e., 

  
E τ i −τ 0 |τ 0
⎡⎣ ⎤⎦ ). The size and shape of the neighborhood within which tilts are 

most similar change dramatically with the target tilt; the iso-difference contours are 
approximately elliptical  (Fig. 2D). For example, if the tilt at the center of a spatial area is equal 
to 0º (e.g., the side of a tree trunk), tilts at spatial locations above and below the center are 
more likely to be similar to the target tilt than tilts to the left and right. Thus, for a central target 
tilt of 0º, a vertically elongated pooling region may be appropriate. For a central target tilt of 90°, 
spatial locations to the left and right of the center are most likely to be similar to the target tilt, 
and neighboring tilts are likely to be similar over a larger area. More generally, the statistics 
suggest that the pooling region should be elongated in a direction that is orthogonal to the tilt 
direction. Visual systems that use local estimates, and pool them adaptively consistent with 
these statistical regularities, have the potential to outperform visual systems that pool local 
estimates with fixed (non-adaptive) neighborhoods. Before developing specific models that will 
investigate these ideas, we describe a psychophysical experiment that we performed to 
determine how humans estimate tilt in natural scenes.  
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Psychophysical experiment 
To test how human observers estimate 3D tilt in natural scenes, we performed a psychophysical 
experiment. The scenes were obtained from the same database that we used to analyze the 
natural scene statistics [15] (see above). Two sets of 3600 scene locations were randomly 
sampled from the database under specified constraints. We only sampled regions with surfaces 
within a specified range of distances, slants, and image contrasts. The constraints ensured that 
the image cues were measureable by the human visual system, that the task was well defined, 
and that the stimuli could be presented without artifacts on our display system (see Methods).  
 
Scenes were displayed on a large stereo-projection system at a 3m viewing distance (Fig. 3A). 
The display system creates retinal images that provide a close approximation to the retinal 
images and stereo-viewing geometry that viewing the original scene would have created [16]. 
On each trial, the observer viewed a scene location through a 3º diameter circular stereoscopic 
window. The task was to estimate the 3D tilt of the surface at the center of each stereoscopic 
window. Observers indicated their estimates with a mouse-controlled graphical probe (Fig. 3B). 
Human tilt estimation performance is presented alongside modeling results in subsequent 
sections.  

 
Figure 3. Human tilt estimation experiment. A Human observers binocularly viewed real-world scenes through a 
circular aperture with a 3º diameter that was positioned stereoscopically in front of the scene. B Example of stimuli. 
Left-eye, right-eye, and left-eye images (for both uncrossed and crossed fusion). The patches are displayed with a 
graphical probe (white circle and three tick marks). Observers rotated the probe to align the middle tick mark with the 
perceived tilt for the surface point in the center of the window.  
 
Modeling 
The proposed model of tilt estimation has two hierarchical processing stages. In the first stage, 
local estimates are computed from image cues that are extracted from natural images. In the 
second stage, global estimates are obtained by pooling the local estimates within a spatial 
neighborhood centered on a target location; the global pooling rules are motivated by our 
statistical analyses (cf. Fig. 2CD) of how tilts are spatially related in natural scenes. These two 
processing stages are described in order.  
 
The modeling effort described here builds on previous work in two ways [16]. The primary 
development is in how the current model makes use of spatial context; local estimates are 
pooled based on the statistics of surface orientation in real-world scenes. A secondary 
development is that the local estimates are now of signed tilt (i.e., both tilt magnitude and sign) 
rather than of only unsigned tilt (i.e., tilt magnitude; Fig. 1). These developments allow us to 
investigate the manner in which humans pool estimates of signed tilt across space.  
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Local signed tilt estimation 
The first stage of the hierarchical model estimates local tilt, relying on the statistics relating local 
image cues and surface tilt in natural scenes. The scene statistics are compiled from hundreds 
of millions of samples from the previously mentioned database of natural scenes[15]. The local 
estimation stage is based closely on a previously published local model that predicted many of 
the successes and failures of human tilt estimation in natural scenes [15,16]. However, the 
previous model had a shortcoming; it provided estimates only of unsigned tilt. The local model 
proposed here provides estimates of both tilt magnitude and sign (i.e., signed tilt).  

 
Figure 4. Constructing local and global models of tilt estimation. A Image cues and groundtruth tilt in natural scenes. 
Image cues are derived directly from photographic stereo images (top). Groundtruth tilt at each pixel is computed 
directly from the range data (cf. Fig. 2A). Here, groundtruth tilt is depicted with local surface normals instead of a 
colormap (cf. Fig. 2B).  B The local model estimates tilt based on local image cues. Local estimates are obtained via 
lookup tables that store conditional means (i.e. posterior means) given all possible combinations of three quantized 
unsigned image cue values (i.e. 643 unique cue combinations), and one quantized signed image cue value (i.e. 64 
unique cue values), as computed from the natural image database. We have previously verified that quantizing the 
cue values is not a primary limiting factor on the performance of the model [16]. C Pooling local estimates in a spatial 
pooling region centered on a target location. D Each global estimate is obtained by pooling local estimates over a 
spatial neighborhood. Each local estimate is obtained by combining cues that are computed from multiple pixels in 
the image. Thus, image information contributes to the global estimate from an area larger than the local estimate-
pooling region. 
 
The local model first computes the estimate of unsigned tilt given three unsigned image cues: 
local luminance, texture, and disparity gradients. The estimate of unsigned tilt   τ̂ u  specifies the 
tilt magnitude and is equal to the mean of the posterior over unsigned tilt given the unsigned 
image cues, 

 τ̂ u = E τ u | cu⎡⎣ ⎤⎦ = τ u p τ u | cu( )u∑ ,        (1) 

where τ u  is the unsigned groundtruth tilt, and cu  is a vector of three unsigned cue values (Fig. 
4A cube). (Note the expression for the posterior mean in Eq. 1 is used as notational shorthand 
for the mean of a probability distribution over a circular variable; see Methods). The posterior 
mean is equivalent to the Bayes-optimal estimate assuming the circular analog to a squared-
error cost function (see Methods).  
 
The model then obtains the estimate of tilt sign   sgn τ̂ s( )  by computing the mean of the posterior 
over signed tilt given the signed disparity cue (Fig. 4A, bar), which is the only cue providing 
reliable information about sign. Specifically,   
 

sgn τ̂ s( ) = sgn E τ s | cs[ ]( ) = sgn τ s p τ s | cs( )s∑( ) ,    (2)  
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where τ s  is the signed groundtruth tilt, and cs  is the signed disparity cue (Fig. 4A bar). The final 
local estimate of signed tilt is obtained by multiplying the estimate of tilt magnitude (  τ̂ u  itself) by 
the estimate of tilt sign 
 

τ̂ local = τ̂ u ⋅sgn τ̂ s( ) .        (3) 
 
(Note that an alternative approach would be to compute the posterior mean over signed tilt 
given all three image cues. Doing so, however, produces larger errors. We favor the more 
accurate method.) These local estimates are used as input to the second stage of the 
hierarchical model. Performance of the local model will be compared to the performance of 
models that use global pooling in subsequent sections.  
 
Global tilt estimation 
The second stage of the hierarchical model pools local estimates to improve performance. The 
pooling rules that we investigate are based on the statistical properties of tilt natural scenes. We 
have shown that groundtruth tilt signals exhibit statistical regularities across space (cf. Fig. 
2C,D). Under these conditions, pooling local estimates has the potential to average out noise 
and improve performance [29]. But the benefit of averaging out noise by pooling must be 
balanced against the risk of averaging over groundtruth signals that are changing across space. 
Considering two extremes helps drive the point home. On one extreme, if local groundtruth 
signals are perfectly correlated across space, then the optimal pooling rule is to average all local 
estimates across the largest possible area. On the other extreme, if local groundtruth signals 
are perfectly uncorrelated across space (i.e., random), any spatial pooling at all degrades 
performance. Thus, to realize performance improvements, the pooling rules must be well 
matched to the governing statistics. If all local estimates are equally reliable, for example, the 
optimal pooling area should be determined by the spatial correlation of the groundtruth signals.  
 
The global pooling models proposed here compute a global tilt estimate at a given target 
location from a weighted sum of the local estimates in a spatial neighborhood centered on the 
target location (Fig. 4B). The specific weights and the neighborhood together represent the 
pooling rule. Specifically, the global estimate is given by  
 

τ̂ global = wiτ̂ i
local

i∈N
∑  ,       (4) 

 
where  N  is the spatial neighborhood, and wi  is the weight for each local tilt estimate within the 
neighborhood [30-32].  (Note that Eq. 4 is notational shorthand for the weighted circular mean; 
see Methods). Interestingly, pooling local estimates causes image information from an area 
larger than the pooling region to contribute to each global estimate (Fig. 4C).  
 
We examine the performance of global pooling relative to the local model (Fig. 5A) in the 
context of two global pooling strategies: fixed circular pooling and adaptive elliptical pooling (Fig. 
5BC). The fixed circular pooling model uses the same pooling area regardless of the tilt at the 
target location in the center of the pooling region (Fig. 5B). The adaptive elliptical pooling model 
changes the pooling region with the target tilt (Fig. 5C). Each of these pooling strategies is 
motivated by the natural scene statistics shown in Fig. 2C and Fig. 2D, respectively, and is 
discussed in more detail below.  
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Figure 5. Local and global models for tilt estimation. A The local model obtains a local tilt estimate given three local 
image cues. B The fixed circular pooling model uses a circular pooling region with the same size for all target 
groundtruth tilts (cf. Fig. 2C). C The adaptive elliptical pooling model uses an adaptive pooling region with a different 
size, aspect ratio, and orientation for each groundtruth tilt (cf. Fig. 2D). As the average area of the adaptive elliptical 
pooling region changes, the relative area, orientation, and aspect ratio of the pooling regions are held fixed,  
 
We quantify performance of each model in two ways. First, for a given pooling strategy, we 
analyze how pooling changes the accuracy of groundtruth tilt estimation. Second, we analyze 
how well a given pooling strategy accounts for human performance. If the human visual system 
uses global context to estimate tilt, then human responses should be better predicted by a 
global model that uses spatial context than by a local model that uses only local image cues. By 
comparing the neighborhood sizes that optimize groundtruth tilt estimation and that maximize 
the prediction of human performance, we gain insight into the pooling strategy that humans use 
when estimating tilt in natural scenes. 
 
Fixed Circular Pooling: Modeling Results and Human Performance  
We start by considering a model with a fixed circular pooling. A fixed circular pooling region is 
centered on the target, and it equally weights each local estimate in the pooling region (i.e., 

 wi = wj  for all i and j; Fig. 4B). The circular shape of the pooling region is motivated by the 
circular shape of the iso-similarity contours in natural tilt statistics (see Fig. 2C). For this model 
to be optimal, two conditions must be satisfied, assuming zero noise correlations. The first 
condition is that all groundtruth tilts within the pooling region must have the same value. The 
second condition is that local estimates, regardless of their value, must provide equally reliable 
information about the groundtruth tilt that gave rise to the estimate. Although neither condition 
can be strictly true, there is some empirical justification for each. First, groundtruth tilts within a 
sufficiently small circular area tend to be quite similar (Fig. 2C). Assuming that all tilts are equal 
within the pooling region is therefore not an unreasonable approximation, provided the pooling 
region is not too large. Second, probability distributions over groundtruth tilt  given a local 
estimate with a particular value (obtained from the local model) 

  
p τ | τ̂ local( )  are approximately 

shift-invariant (Fig. 6); each local estimate is thus an equally reliable predictor of groundtruth tilt 
regardless of its value [16]. Pooling local tilt estimates with equal weights in a circular region is 
thus a reasonable starting point for investigating the degree to which spatial pooling can 
improve performance.  
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Figure 6. Conditional distributions of groundtruth tilt   p τ | τ̂ local( )  given the value of the local tilt estimate. For 

example, the fifth subplot in the first row shows the distribution of groundtruth tilts given that the local tilt estimate had 

a value of 120º   p τ | τ̂ local = 120°( ) . The fact that the conditional distributions of groundtruth tilts are approximately 

shift-invariant indicates that each local tilt estimate, regardless of its value, provides approximately equally reliable 
information about the groundtruth tilt. Gray regions represent 95% confidence intervals from Monte Carlo simulations 

of 1000 experimental datasets. Confidence intervals at non-cardinal tilts (e.g.   τ̂
local = 30º, 60º, 120º, 150º, etc.) are 

larger in part because the local model produces fewer non-cardinal tilt estimates, in keeping with the prior probability 
distribution over tilt, which has peaks at the cardinal tilts (e.g. τ =0º, 90º, etc.). 

To analyze the fixed circular pooling model, we examined how performance changes as a 
function of the pooling region diameter. First, we determined the size of the pooling region that 
produces the best estimates of groundtruth tilt in natural scenes (Fig. 7). Second, we 
determined the size of the pooling region that maximizes the model prediction of human 
estimates (Fig. 8).  
 
To evaluate the model’s groundtruth tilt estimation performance, we computed the estimation 
error between model estimates and groundtruth tilts across the entire stimulus ensemble used 
in the psychophysical experiment. The estimation error is the circular distance between model 
estimate and groundtruth tilt. We express neighborhood size by the diameter of the pooling 
region. Mean estimation error across all stimuli is plotted as a function of the pooling diameter of 
the circular region. With fixed circular pooling, estimation error decreases as the pooling 
diameter increases until it reaches a critical pooling diameter that optimizes performance (Fig. 
7). The critical pooling diameter is approximately 1.0º. As pooling diameter increases further, 
estimation error begins to increase. Once pooling diameters exceed 3.5º, the global model fails 
to outperform the local model (Fig. 7; dashed line). These results show that, for a range of 
pooling diameters, the global model with fixed circular pooling provides more accurate estimates 
of tilt than does the local model. The overall benefit of global pooling is small (~10º), but it is 
robust. To ensure that this result is not an artifact of the experimental stimulus set, we analyzed 
estimation errors with a Monte Carlo simulation on 1000 sets of randomly sampled stimuli. The 
results show that global pooling consistently reduces estimation error; the performance 
improvements are not due to the particular sample of stimuli used in the psychophysical 
experiment. 
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Figure 7. Groundtruth tilt estimation errors from the global model with fixed circular pooling. Mean estimation error is 
plotted as a function of the diameter of pooling region. Mean estimation errors are computed across all tilts. The 
dashed line shows mean estimation error for the local model; the local model does not pool local estimates and thus 
has a pooling diameter of 0º. Monte Carlo simulations on 1000 randomly sampled stimulus sets were used to obtain 
95% confidence intervals on estimation error (gray area). Data from Exp. 1 and Exp. 2 are shown in the left and right 
columns, respectively.  

To examine whether global pooling predicts human performance better than the local model, we 
computed the prediction error between model estimates and human estimates across the stimuli 
used in the psychophysical experiment. The prediction error is the circular distance between the 
model estimate and the human estimate. Mean prediction error across all stimuli is plotted as a 
function of the diameter of the circular pooling region. Just as with estimation error, prediction 
error decreases as pooling diameter increases, until a critical diameter is reached (Fig. 8). The 
pooling diameter that minimizes prediction error is between 1.0º and 2.0º. This diameter is 
similar to the diameter that minimizes estimation error (Fig. 8). The same result holds for 
individual human observers; the pooling diameter that minimizes prediction error is between 1.0-
1.5º for four of five human observers (Fig. S1). This result suggests that the human visual 
system pools local estimates over an area that is sized to balance the benefits (i.e., averaging 
out measurement noise) and the costs (i.e., pooling over irrelevant different groundtruth tilts) to 
maximize accuracy.  

 
Figure 8. Human prediction errors from the global model with fixed circular pooling. Mean prediction error is plotted 
as a function of the diameter of pooling region. Mean prediction errors are computed across all tilts and human 
observers. Data from Exp. 1 and Exp. 2 are shown in the left and right columns, respectively. 
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Adaptive Elliptical Pooling: Modeling Results and Human Performance  
Pooling local tilt estimates within a fixed circular neighborhood confers a performance benefit 
compared to no pooling at all. Our analyses of natural scene statistics show that the spatial 
neighborhood in which nearby tilts are most similar to the target tilt depends on the target tilt 
itself (see Fig. 2D). These elliptical regions of similarity suggest that a strategy more 
sophisticated than fixed circular pooling may yield additional performance improvements. The 
adaptive elliptical pooling model pools local estimates within an elliptical neighborhood that 
changes adaptively with the target tilt. The orientation, aspect ratio, and relative size of the 
elliptical pooling regions were fit to and fixed by the scene statistics in Fig. 2D (see Methods). 
The results of these fits are shown in Fig. 9A. 
 
To determine the performance of the adaptive elliptical pooling model, we varied the average 
size of the elliptical pooling regions while keeping the pattern of relative size, orientation, and 
aspect ratio fixed, and then computed groundtruth tilt estimation errors and human prediction 
errors. These errors were compared to the errors obtained with fixed circular pooling and the 
local model. However, direct comparison with fixed circular pooling is complicated by the 
relative size and shape changes associated with adaptive elliptical pooling. To address this 
problem, we defined the equivalent diameter of a given ellipse as the diameter of the circle 

  D = 2 A π  that has the same area  A  as the ellipse. The average equivalent diameter 

  D = 2 A π  corresponds to the average ellipse area  A = Aiτ∑  across target tilts where  Ai  is 

the elliptical area associated with each groundtruth tilt  τ i . For a given average equivalent 
diameter, the areas of the adaptive elliptical pooling regions across different target tilts are 
proportional to the areas of the ellipses fit to the natural scene statistics (see Figs. 5C, 9AB).  
 
To enable direct comparison of the two global pooling models, the average equivalent diameter 
of the adaptive pooling model is matched with the diameter of a fixed circular pooling region. 
Then, estimation and prediction errors from the two models are plotted against each other as a 
function of average equivalent diameter (Fig 9CD). Adaptive elliptical pooling causes a small but 
robust improvement in estimation performance (Fig. 9C; blue curve); the minimum estimation 
errors from adaptive elliptical pooling were lower than those errors from fixed circular pooling on 
1000 randomly sampled sets of stimuli (inset in Fig 9C).  
 
In the analysis just presented, however, the elliptical pooling area (e.g., relative size, orientation, 
aspect ratio) was chosen based on the groundtruth tilt at the target location in the center of each 
pooling region. The groundtruth tilt at the target location (or any other location) is, of course, not 
directly available to the visual system. Therefore, it is important to ask whether adaptive pooling 
provides a benefit when the local estimate from the local model, instead of the groundtruth tilt, is 
used to determine the adaptive pooling region. We found that results are essentially unchanged 
(Fig. 9C; orange curve). When the local estimate is used, adaptive pooling improves global tilt 
estimation performance compared to fixed circular pooling, although the benefit in error is 
smaller than when groundtruth tilt is used.  
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Figure 9 Estimation errors of adaptive elliptical pooling model. A The adaptive elliptical pooling area dictated by the 
target tilt. B The relative elliptical pooling area for different target tilts. As the average equivalent diameter increases 
or decreases, the relative size (i.e., equivalent diameter) remains in a fixed proportion. C Estimation error (model 
estimate vs. groundtruth tilt) as a function of pooling area. Performance is plotted for two adaptive pooling strategies: 
the groundtruth-based strategy chooses the elliptical pooling region based on the groundtruth tilt at the target location 
(blue); the local-estimate-based strategy chooses the elliptical pooling region based on the local tilt estimate as the 
target location (orange). The insets show simulation results that compare performance of the adaptive elliptical 
pooling model vs. the fixed circular pooling model on 1000 matched randomly sampled stimulus sets. Computing the 
prediction errors on matched stimulus sets isolates the impact of the model, and prevents stimulus variability from 
unduly affecting the results. Both adaptive pooling models (groundtruth-tilt-based, blue; local-estimate-based, orange) 
outperform the fixed circular pooling model on nearly all stimulus sets (i.e., data is below positive diagonal). D 
Simulation results, just as in C insets, except that estimation error is shown as a function of groundtruth tilt 
(subpanels). The fact that the majority of points lie below the dashed unity line, indicating that adaptive elliptical 
pooling outperforms fixed circular pooling in tilt estimation at all groundtruth tilts for the task of estimating groundtruth 
tilt in natural scenes. 
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The improvement of overall estimation performance by adaptive elliptical pooling leaves open 
the possibility that adaptive pooling produces a large benefit at one or only a small number of 
target tilts while hurting performance at other target tilts. If the natural scene statistics indeed 
govern the pooling rules that optimize performance, a performance improvement should be 
observed at each target groundtruth tilt. To check, we examined the performance of the fixed 
circular pooling vs. adaptive elliptical pooling at each target tilt (Fig. 9D; Fig. S2). Adaptive 
elliptical pooling outperforms fixed circular pooling at all target tilts regardless of whether the 
groundtruth tilt or the local tilt estimate at the target location is used to determine the pooling 
region. The results indicate that adaptive elliptical pooling improves performance compared to 
fixed circular pooling at each individual target tilt and provides further evidence that pooling 
rules governed by natural scene statistics improve estimation performance. 

 

 
Figure 10. Prediction error of adaptive elliptical pooling model. Human prediction error (model estimate vs. human 
estimate) is plotted as a function of pooling area (i.e., equivalent diameter). Performance is plotted for two adaptive 
elliptical pooling strategies: the groundtruth-based strategy chooses the elliptical pooling region based on the 
groundtruth tilt at the target location (blue); the local-estimate-based strategy chooses the elliptical pooling region 
based on the local tilt estimate as the target location (orange). For comparative purposes, performance is also plotted 
for the fixed circular pooling model (black; same data as Fig. 9C).  

.  
The story is a bit different when it comes to the prediction of human prediction error. Adaptive 
elliptical pooling and fixed circular pooling provide equivalently good predictions of human 
performance regardless of whether the pooling region is determined by the groundtruth tilt or the 
local estimate at the target location (Fig. 10); similar patterns of performance are obtained for 
individual human observers (Fig. S1). Human prediction error therefore does not allow us to 
discriminate between fixed circular and adaptive elliptical pooling in so far as their ability to 
predict human performance. To determine which of the two models provides a better account of 
human performance, additional analyses are necessary.  
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Figure 11. Adaptive pooling regions predicted by natural scene statistics predict the pooling regions that maximize 
performance at each groundtruth tilt. A Equivalent pooling diameters fit to the natural scene statistics (black; same 
data as Fig. 9B) and equivalent pooling diameters that minimize estimation error (groundtruth-based, blue; local-
estimate-based, orange), plotted as a function of groundtruth tilt. The left and right columns represent data from Exp. 
1 and Exp. 2, respectively. B Best estimation diameters are correlated with the diameters fit to the natural scene 
statistics. C Equivalent pooling diameter fit to the natural scene statistics and equivalent pooling diameters that 
minimize prediction error, plotted as a function of groundtruth tilt. D Best prediction diameters are correlated with the 
diameters fit to the natural scene statistics. All correlations were significant at the level of p<0.05; all but one were 
significant at the level of p<0.001.  
 
To further examine whether adaptive or fixed pooling provides a better account of human visual 
processing, we determined the pooling region size that best accounts for human performance at 
each target tilt. If the fixed pooling model is the best account of human performance, human 
pooling at all target tilts should be best accounted for similarly sized pooling regions. Otherwise, 
the size of the best pooling region should vary systematically with the tilt at the target location. 
In the analyses presented thus far, the areas used in the adaptive elliptical pooling model to 
estimate groundtruth tilt and predict human performance were fixed by fits to the natural scene 
statistics (Figs. 2D,5C,9AB). But the areas determined by these fits do not necessarily match 
the areas that maximize the accuracy of groundtruth tilt estimation or the prediction of human 
performance. Thus, we independently determined the size of the elliptical pooling region that 
maximizes performance (i.e., minimizes error) at each groundtruth tilt. Fig. 11A plots the best 
equivalent pooling diameter for estimation at each groundtruth tilt against the equivalent pooling 
diameters that were fit to the natural scene statistics. The correlation is strong, both for the 
groundtruth-based and for the local-estimate-based adaptive pooling strategies. Fig. 11B plots 
the pooling diameters that best predict human performance at each groundtruth tilt. The same 
conclusions hold. Similar results are obtained if the natural scene statistics are fit over a larger 
spatial area (Fig. S3). Thus, for both groundtruth- and local-estimate-based adaptive strategies, 
the best pooling diameters for estimating groundtruth tilt and predicting human performance are 
tightly correlated with those obtained by fits to the natural scene statistics. These results favor 
the adaptive elliptical pooling model over the fixed circular pooling model as the best account of 
human visual processing, given that the fixed circular pooling strategy predicts no change in 
pooling diameter with groundtruth tilt. Natural scene statistics therefore provide a solid 
prediction for how signals should be pooled across space to maximize the estimation of 
groundtruth tilt and the prediction of human performance.  
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Figure 12. Pooling diameters that maximize estimation performance predict those that maximize the prediction of 
human performance. Each data point represents the diameter that maximizes performance for a different groundtruth 
tilt at the target location (cf. Fig. 11). The actual sizes of the pooling regions that maximize estimation performance in 
are similar to the sizes that maximize the prediction of human performance for both groundtruth-based (blue) and 
local-estimate-based (orange) strategies. 
 
Finally, we compared the absolute sizes of the best pooling diameters (cf. Fig. 11) for 
groundtruth tilt estimation against those that are best for predicting human performance. In 
some sense, this is the most direct test of the hypothesis that natural scene statistics guide how 
humans pool information across space in surface tilt estimation. If humans use the pooling 
regions that yield the most accurate performance, humans are doing the right thing. The 
absolute sizes of the adaptive pooling regions that maximize estimation and prediction 
performance are strongly related to one another (Fig. 12AB). In fact, when the size of the 
adaptive pooling region is based on the local tilt estimate at the target location, the best 
estimation diameters (i.e., the equivalent pooling diameters that maximize estimation 
performance) are nearly the same as the best prediction diameters (i.e., the pooling diameters 
that maximize the model ability to predict human performance; Fig. 12B).  
 
DISCUSSION 
In this paper, we have analyzed the spatial statistics of surface tilt in natural scenes, and found 
that a hierarchical model of surface tilt estimation that pools local tilt estimates according to 
these statistics provides more accurate estimates of groundtruth tilt and better predictions of 
human tilt estimation than a principled model that bases performance only on local image cues 
[15,16]. Additionally, we have shown that the spatial scale of the pooling region that maximizes 
groundtruth tilt estimation performance is similar to the spatial scale that optimizes the model 
ability to predict human performance. Together, these findings show that natural scene statistics 
predict how humans pool information across space in surface tilt estimation. 
 
The evidence for pooling 
We have shown that a two-stage hierarchical model of visual information processing provides a 
good account of tilt estimation in natural scenes. To be confident that the second (i.e., pooling) 
stage of the model is necessary, the performance improvements of the global model should be 
due at least in part to pooling local estimates, and not due simply to the fact that the global 
model uses image information from a larger spatial area than the local model (cf. Fig. 4C). One 
approach to demonstrating this is to examine whether the performance of a local (i.e., one-
stage) model, that uses information from the same area of the image as the global model, can 
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equal the ability of the global model to estimate groundtruth tilt and predict human performance. 
A local model that computes cue values from an area of 1.25deg closely approximates the 
image area from which the best global model implicitly uses image information. (The image area 
that contributes to each global estimate is the sum of the areas of the pooling region and the 
Gaussian derivative operator used to compute the local image cues; see Methods.) This area-
matched local model underperforms the best global model. Note that we cannot exhaustively 
examine all possible local models. We therefore cannot rule out the possibility that there exists 
some local model—that, for example, uses a different set of local cues—that can achieve 
performance equivalent to the global model. However, at least in the space of models that we 
have considered, the demonstrated benefit of global pooling cannot be trivially explained by the 
fact that the global model implicitly uses image information over a larger area than the local 
model. The demonstrated links between the scene statistics and the best performing adaptive 
global model suggests that pooling according to the natural scene statistics benefits 
performance.  
 
Visual systems and the internalization of natural scene statistics 
In recent years, a series of papers have provided evidence linking certain statistical aspects of 
natural images and scenes [15,28,33-38] to the design of the human visual system [39-41], and 
to the performance of ideal and human observers in perceptual tasks [14,16,37,42-51]. This 
broad program of research has, with varying degrees of rigor, invoked natural scene statistics to 
account for a strikingly diverse set of topics: how the shape of pupils changes across species in 
different ecological niches [41], where corresponding points are located in the two retinas 
[39,40], how biases in binocular eye movements manifest [48], how targets are detected in 
natural images [47], how image contours are perceptually grouped [37,42], how image 
orientation is estimated [45], how focus error is estimated[50,51], how binocular disparity is 
estimated [44,52,53], how image motion is estimated[46,49,54], how 3D tilt is estimated [16], 
and now, how cues to 3D tilt are pooled across space. Over this same period, numerous 
modeling frameworks have emerged that provide theoretical and computational methods for 
predicting and accounting for these links [52,55-58]. The coming years are likely to demonstrate 
more links between properties of natural scenes and functional properties of sensory-perceptual 
systems.  
 
Adaptive spatial spooling 
The current work indicates that the human visual system adaptively pools information across a 
spatial neighborhood that is closely related to the spatial neighborhood that maximizes the 
ability to estimate groundtruth tilt in natural scenes. A number of investigations have found 
evidence for adaptive spatial pooling. Local image properties (e.g., contrast) at a target location 
influence the spatial region over which information is integrated, both at the level of individual 
neurons and at the level of perception [59,60]. The current work shows that, in the domain of 
surface tilt estimation, the rules governing adaptive pooling are linked to the statistics of natural 
scenes. However, local estimates should only be pooled if they carry information about the 
same physical source; local estimates should not typically be pooled across depth boundaries 
[61-63]. The current work is limited in that it does not explicitly address how the visual system 
should avoid pooling across depth boundaries. This is left as a project for the future. 
 
Spatial pooling and cue combination 
The logic underlying the spatial pooling rules investigated here is closely related to the logic 
underlying standard theories of cue combination. Spatial pooling and cue combination both rely 
on the simple fact that multiple sources of information are better than one, provided that the 
sources are properly combined. In the current analysis of spatial pooling, the individual local tilt 
estimates play a similar role that individual cues play in cue combination. The difference 
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between cue combination and spatial pooling is in the point of emphasis. Cue combination has 
most often been studied for cases in which multiple measurements of a single groundtruth value 
are available at the same spatial location (but see [31,64,65]). Spatial pooling, by contrast, 
focuses on the integration of pieces of information at multiple different spatial locations, which 
often correspond to multiple groundtruth values. Developing computational and experimental 
paradigms to rigorously explore these distinctions is an important goal for future work. 
 
METHODS 
Human observers  
Four human observers participated in the two experiments; two authors and one naïve subject 
participated in Experiment 1 and one author and a different naïve subject participated in 
Experiment 2. Informed consent was obtained from participants before the experiment. The 
research protocol was approved by the Institutional Review Board (IRB) at the University of 
Pennsylvania (protocol number 824435) and is in accordance with the Declaration of Helsinki.  
 
Natural scene database 
Natural stimuli were sampled from a recently published natural scene database containing 
stereo-images with precisely co-registered distance data of natural scenes [15]. The images for 
left and right eyes were taken at two positions separated by a typical human inter-pupillary 
distance (6.5cm). Scenes were photographed such that no objects were nearer than 3m and 
such that all images were sharp. The left- and right-eye images associated with each of the 95 
stereo pairs had a resolution of 1080x1920 pixels. The natural scenes depicted in the database 
contain buildings, streets, shrubs, trees, and open green areas. 
 
Apparatus  
Stereo-image patches were presented with a ViewPixx Technologies ProPixx projector fitted 
with dynamic polarization filter. Left and right eye images were temporally interleaved at a 
refresh rate of 120 Hz (60 Hz per eye). Projected images were displayed on a 2.0x1.2m 
Harkness Clarus 140XC polarization-maintaining screen and viewed through passive 
polarization maintaining goggles. At the 3m viewing distance, the screen subtended 36ºx21º of 
visual angle. The 3m screen distance minimized screen cues to flatness depth because the blur 
detection threshold is approximately 1/3D [66]. Head position was stabilized by a chinrest and a 
headrest. The display system nearly recreates the retinal images that would have been formed 
by the original scenes. The primary difference is that the overall intensity of the light reaching 
the eyes is lower because sunlight is more intense than the max intensity produced by the 
projector (84cd/m2).  
 
Experimental stimuli 
Each natural scene was viewed binocularly in gray scale through a virtual stereoscopic 
aperture. The aperture had a diameter of 3° of visual angle and was positioned 5 arcmin of 
disparity in front of the surface that appeared at its center (Fig. 2A). Scene locations (i.e., 
patches) were sampled with a number of constraints. In Experiment 1, patches were excluded i) 
if the center pixel was associated with a surface slant of less than 30º or more than 75º, (ii) if the 
center pixel was associated with a surface distance that was less than 5m or larger than 50m, 
(iii) if the center pixel was in a half-occluded region, and (iv) if the root-mean-squared contrast of 
the patch was less than 5% or greater than 40%. In Experiment 2, all constraints were the same 
except the acceptable surface slants were between 30º and 60º instead of between 30º and 75º.   
Stimuli were selected so that all tilts were evenly represented in the experiments. For each of 24 
bins that were 15º wide (24 bins x 15º = 360º), 150 stereo-image patches were selected for a 
total of 3600 unique patches (3600 = 24 x 150). In both experiments, the patches were 
displayed at the image location from which they were sampled. 
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Procedure  
Data was collected in 24 blocks of randomly permutated trials. Each block lasted approximately 
10 min. On each trial, observers estimated the tilt at the center of each patch. The task was to 
match the surface tilt angle with the orientation of a mouse-controlled graphical probe. The initial 
probe orientation was randomly selected. There was no time limit for the response. No feedback 
was provided. 
 
Groundtruth tilt 
Groundtruth tilt τ  is computed from the distance data contained in the range map  r  that is co-
registered to each natural image in the database. We defined groundtruth tilt 

   
tan−1 ∇ yr ∇xr( )  as 

the orientation of the range gradient[1], where  tan−1 ⋅( )  is the four quadrant inverse tangent 
function. The range gradient was computed by first convolving the groundtruth distance data 
with a 2D Gaussian with space constant  σ tilt  and then taking the partial derivatives in the  x  

and  y  image directions[15,16]. Groundtruth tilt was computed using a space constant  σ tilt  of 
3arcmin, corresponding to analysis kernels of approximately 0.25ºx0.25º.  
 
Image cues to tilt 
Image cue gradients were computed directly from the cue images. The disparity and luminance 
gradients were defined as the orientation of the local disparity and luminance gradients, 

  
tan−1 ∇ ycue ∇xcue( )  and were computed by convolving the cue image with a 2D Gaussian having 

space constant σ cue  of 6arcmin and then taking the partial derivatives in the  x  and  y  image 
directions. The disparity image was computed from the left- and right-eye luminance images via 
standard local windowed cross-correlation [15,29,67]. The cross-correlation window had the 
same space constant as the derivative operator that computed the gradient. The texture cue 
was defined as the dominant orientation of the major axis of the local amplitude 
spectrum[10,15]. The unsigned cue values were obtained by taking the 180º modulus of the 
signed gradients. 
 
Fitting elliptical pooling regions to scene statistics 
To determine how 3D surface tilt is spatially related in natural scenes we computed the mean tilt 
difference as a function of spatial offset in the image (Fig. 2CD). Then, we fit a two-dimensional 
Gaussian to the map of tilt differences after scaling the map so the volume equaled 1.0. The 
aspect ratio and relative size of the elliptical pooling regions were determined from the 
covariance matrix of the best-fit Gaussian, the iso-level curves of which are ellipses. The 
orientation of the elliptical pooling regions was aligned with the orientation of the target tilt.  
 
Mean absolute tilt difference

 
Tilt is a circular (i.e., angular) variable. The difference between two tilts is determined via the 
circular distance, the standard method of computing the difference between circular variables. 
The absolute circular distance between a pair of tilts at two different locations is given by  

 
  
τ i −τ 0 = arg exp j τ i −τ 0( )⎡⎣ ⎤⎦( ) ,       (5) 

where τ 0  is the tilt at the target location, τ i  is the tilt at a neighboring location, and j = −1  is 
the imaginary unit number.  The mean circular distance across pairs of tilts in a given spatial 
relationship is given by 
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 E τ i −τ 0⎡⎣ ⎤⎦ = arg exp j τ ik −τ 0k( )
k=1

N

∑⎛⎝⎜
⎞
⎠⎟

,       (6) 

where N  is the number of tilt pairs contributing to the mean. Tilt differences (i.e., circular 
means) are plotted as a function of spatial location (relative to a target location) in Fig. 2CD. 

  
Local Model: Estimating tilt magnitude 
Tilt magnitude (i.e., unsigned tilt) is estimated from three unsigned tilt cues, cu = lu ,tu ,du{ } , 

where lu  is the unsigned luminance cue, tu  is the unsigned texture cue, and du is the unsigned 

disparity cue at the target location. The tilt estimate is the conditional mean τ̂ u = E τ u cu⎡⎣ ⎤⎦  

given a triplet of image cue measurements cu  (Fig. 4). The conditional mean is identical to the 
mean of the posterior over unsigned tilt assuming a minimum circular distance cost function 
(i.e., analogous to the mean squared error cost function for linear variables). The posterior 
mean equals the sample mean from a large number of samples of τ u  in the natural scene 
database, assuming the samples are representative. Tilt is a circular variable. The conditional 
mean is thus given by  

τ̂ u = E τ u cu⎡⎣ ⎤⎦ = arg
1
N

eiτu
τu∈Ω
∑

⎛

⎝⎜
⎞

⎠⎟
 ,      (7) 

where Ωu  is the set of unsigned groundtruth tilts  τ u  co-occurring with the triplet of cue values 
cu , and N  is the number of tilt samples. On test images, the cue triplet is computed from the 
images and the optimal tilt is obtained from a lookup table (cf. estimate cube in Fig. 4A). 
 
Local Model: Estimating tilt sign 
Tilt sign is determined from the signed disparity cue only cs = ds{ } , where ds  is the signed 
disparity cue at the target location. The  

 sgn τ̂ s( ) = sgn E τ s cs⎡⎣ ⎤⎦( ) = sgn arg 1
N

eiτ s
τ s∈Ω
∑

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ ,    (8) 

where Ωs  is the set of signed groundtruth tilts co-occurring with the signed disparity values cs
and N  is the number of tilt samples.  
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Figure S1. Prediction error for individual human observers. Prediction error is shown for the fixed circular pooling 
model (black), the groundtruth-based adaptive elliptical pooling model (blue), and the local-estimate-based adaptive 
elliptical pooling model (red). The top and bottom rows indicate results from Exp. 1 and Exp. 2, respectively. The 
pooling region that minimizes prediction error for all models and all human observers (except observer S3) 
corresponds to an equivalent pooling diameter between 1º and 2º. 
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Figure S2. Estimation error with fixed circular vs. adaptive elliptical pooling for different groundtruth tilts in Exp. 2. 
Each point represents the mean estimation error in a randomly sampled stimulus set across stimuli at a given 
groundtruth tilt. Estimation error with fixed circular pooling (black) is plotted against estimation error with adaptive 
elliptical pooling based on the groundtruth tilt (blue) and the tilt estimate (red) at the target location. Computing the 
prediction errors on matched stimulus sets isolates the impact of the model, and prevents stimulus variability from 
unduly affecting the results.  The fact that the majority of points lie below the dashed unity line, indicating that 
adaptive elliptical pooling outperforms fixed circular pooling for the task of estimating groundtruth tilt in natural 
scenes.  
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Figure S3. Robustness of natural scene statistics predictions. A Spatial statistics of tilt in natural scenes over a 1deg 
area. Mean absolute tilt difference as a function of spatial location relative to a target location. B Mean absolute tilt 
difference conditioned on the groundtruth tilt at the target location. C Fits to the scene statistics in B. D Equivalent 
diameters of the fits to the scene statistics in C. E Adaptive pooling regions predicted by natural scene statistics 
predict the pooling regions that maximize performance at each groundtruth tilt. Equivalent pooling diameters fit to the 
natural scene statistics and equivalent pooling diameters that minimize estimation error (groundtruth-based, blue; 
local-estimate-based, orange), plotted as a function of groundtruth tilt. The left and right columns represents data 
from Exp. 1 and Exp. 2, respectively. F Best estimation diameters are correlated with the diameters fit to the natural 
scene statistics. G Equivalent pooling diameter fit to the natural scene statistics and equivalent pooling diameters that 
minimize prediction error, plotted as a function of groundtruth tilt. H Best prediction diameters are correlated with the 
diameters fit to the natural scene statistics. 
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