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  Abstract 

Binocular stereo cues are important for discriminating 3D surface orientation, especially at near 
distances. We devised a single-interval task where observers discriminated the slant of a 
densely textured planar test surface relative to a textured planar surround reference surface. 
Although surfaces were rendered with correct perspective, the stimuli were designed so that 
the binocular cues dominated performance. Slant discrimination performance was measured as 
a function of the reference slant and the level of uncorrelated white noise added to the test-
plane images in the left and right eye. We compared human performance with an approximate 
ideal observer (planar cross correlation, PCC) and two sub-ideal observers.  The PCC observer 
uses the image in one eye and back projection to predict the test image in the other eye for all 
possible slants, tilts, and distances. The estimated slant, tilt, and distance are determined by the 
prediction that most closely matches the measured image in the other eye. The first sub-ideal 
observer (local PCC, LPCC) applies planar cross correlation over local neighborhoods and then 
pools estimates across the test plane.  The second sub-optimal observer (standard cross 
correlation, SCC), uses only positional disparity information. We find that the ideal observer 
(PCC) and the first sub-ideal observer (LPCC) outperform the second sub-ideal observer (SCC), 
demonstrating the benefits of structural disparities. We also find that all three model observers 
can account for human performance, if two free parameters are included: a fixed small level of 
internal estimation noise, and a fixed overall efficiency scalar on slant discriminability. 

Precis: 

We measured human stereo slant discrimination thresholds for accurately-rendered textured 
surfaces designed so that performance is dominated by binocular-disparity cues. We compared 
human performance with an approximate ideal observer and two sub-ideal observers. 

 

Introduction 

Estimating the 3D shape of our surroundings is essential for many everyday behaviors. The 3D 
shape at any point on a smooth surface can be closely approximated over a small neighborhood 
by a plane. Thus, the most local and fundamental measure of shape is local surface orientation. 
Local surface orientation is often specified in terms of slant and tilt (Stevens, 1983). Slant is the 
angle between the surface normal (the unit vector perpendicular to the surface) and the 
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frontoparallel plane (Figure 1A). Tilt is the orientation of the vector formed by projection of the 
surface normal onto the frontoparallel plane (Figure 1B). 

A common view of 3D shape perception is that it begins with estimation of the local slants and 
tilts, which are then integrated into a representation of the 3D shape. Thus, not surprisingly, 
there have been a large number of studies directed at measuring and understanding the 
perception of 3D slant and tilt (e.g., see Howard & Rogers, 2012). Here we focus on perception 
of the 3D slant of planar surfaces.  

 

Figure 1. Definition of slant and tilt. A Slant is the angle between the surface normal (black vertical line segment) 
and the frontoparallel plane. Here the slant is varied while the tilt remains at 90o. B Tilt is the orientation of the 
vector formed by projection of the surface normal onto the frontoparallel plane.  Here the tilt is varied while the 
slant remains at 45o. 

Under natural conditions (without head or scene movement), the image information available 
for 3D slant estimation typically consists of the binocular cue of disparity (the differences 
between the images formed in the two eyes) together with various monocular cues (e.g., linear 
perspective). The primary goal of the current study was to measure slant discrimination under 
naturalistic conditions and to distinguish between specific hypotheses for how the human 
visual system estimates slant from binocular-disparity cues. A number of studies have 
measured slant-discrimination performance from binocular disparity using sparse random dot 
stereograms (Hibbard et al., 2002; Knill & Saunders, 2003; Hillis et al., 2004; Girshick & Banks, 
2009; Burge et al., 2010).  In most of these studies, the stimuli were presented in two temporal 
intervals.  

In natural viewing, it is probably more typical for humans to be comparing the 3D orientations 
of surfaces that are densely textured, and that are located within the same scene at different 
distances (Burge et al., 2016; Kim & Burge, 2018; 2020). Here, we measured slant discrimination 
performance for surfaces that were textured with naturalistic noise (see Figure 3 in Methods). 
The two planar surfaces were presented in a single-interval task, where the smaller test surface 
was in front of a surrounding reference surface by a distance that varied randomly from trial-
trial-trial by a small amount. The stimuli were accurately rendered, and hence contained both 
monocular and binocular cues to surface orientation. To reduce the usefulness of the 
monocular cues, the texture contained few regularities and the shape (i.e., silhouette) of the 
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test surface was jittered (see Methods). A control experiment confirmed that the performance 
of our subjects was completely dominated by the binocular cues (see Results). This allowed us 
to focus on models of slant discrimination from binocular disparity. Specifically, we derived the 
approximate ideal observer for slant discrimination of planar surfaces and compared its 
performance, and those of various sub-ideal observers, with human performance.  To facilitate 
comparison of human and model-observer performance, the slant discrimination thresholds 
were measured with various levels of uncorrelated white noise samples added to the left- and 
right-eye test regions (see Figure 4). 

Ideal-observer models reveal the fundamental computational principles of the task, set a 
proper benchmark against which to compare human performance, and can be used to evaluate 
the effectiveness of heuristic (sub-optimal) mechanisms (Green & Swets, 1966; Geisler, 2011; 
Burge, 2020). To specify the approximate ideal observer here, we assumed that the geometrical 
relationship between the two eyes is known, and that the two images are projections of a 
single patch of planar surface at an unknown distance and with an unknown 3D orientation. 
The choice of coordinate system does not impact the discrimination performance of the ideal or 
sub-ideal observers considered here (see Appendix).  For simplicity we assume a head-centered 
coordinate system where the optic axes of the left and right eyes are parallel to the head-
centered depth axis, and where the left and right images are projections onto a cyclopean 
image plane located a fixed distance from the nodal points of the two eyes (see Figure 2A & 
2B). In the Appendix we consider cases in which the eyes are not in primary position (i.e., not 
parallel to the cyclopean axis), and in which the projection is onto a spherical surface in each 
eye. These cases are important when considering specific hypotheses for the underlying 
anatomy and neurophysiology. 

 

Figure 2. Schematic of the viewing and imaging geometry used for determining ideal and sub-ideal observer 
performance.  A. The test plane is a planar surface whose distance   and slant s are defined with respect to the 
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cyclopean axis. The left (blue) and right (red) images of the test plane are formed in the cyclopean image plane by 
perspective projection for nodal points separated by an interocular distance of 2a.  The ideal observer uses planar 
cross correlation (PCC).  For each possible slant and distance of the test plane, the observer predicts the left test 
image from the right test image (or vice versa) by back projection and then forward projection; for example, the 

predicted gray level at ( ),L Lx y is the gray level at ( ),R Rx y . The estimated slant ŝ and distance ̂  of the test plane 

are the values that give the smallest prediction error. B. In head-centric coordinates all points in the test plane 

have the same slant. The distance   of the test plane is the intercept of the plane, containing the test plane, with 

the cyclopean axis. The distance iz  of individual points in the test plane varies with location in the cyclopean image 

plane. C. In direction-centric coordinates the slant and distance are in general different for different points in the 
test plane.  Model performance is the same for the two coordinate systems, but for simplicity we use head-centric 
coordinates.  

For every possible slant and distance of the surface, the ideal observer computes the predicted 
image in one eye given the image observed in the other eye and the rules of forward- and back-
projection. The estimated slant is the slant value from the slant and distance pair that gives the 
smallest prediction error. We will call this optimal model of slant and distance estimation the 
“planar cross correlation” (PCC) model (see Methods and Appendix).  This observer is optimal 
because it uses all of the available geometric information given planar surfaces. By generating 
predictions via back projection for every possible distance and slant, the PCC observer is 
considering exactly the set of possible differences that can exist between the left and right 
images for a given planar surface.  It then picks the distance and slant that best explains the 
difference between the two images.   

Figure 3 illustrates this mapping for the more general case of an arbitrary 3D surface 
orientation (see also Appendix Figure A1).  Figure 3B shows an image region in the right eye 
(red square) and the back projection to image plane for the left eye (blue trapezoid), for the 
correct distance and surface orientation (60o slant and 45o tilt). Figure 3C demonstrates this 
mapping with the stereo-image pair of a blurred checkerboard surface. 
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Figure 3. Image differences in Cartesian coordinates. A. Viewing geometry. B. A square image patch in the right eye 
view (red) and the back projection of its boundary to the left eye (blue), in Cartesian coordinates centered on the 
cyclopean eye. C. Stereo pair of surfaces and patches in each eye. Fuse images to see a surface with a slant of 60o 
and a tilt of 45o (crossed pair: left and center, uncrossed pair: center and right). Notice that when fused the red 
and blue boundaries coincide. 

In general, human performance deviates from optimal performance. A principled approach for 
generating plausible sub-optimal models is to replace one or more of the optimal computations 
with simpler more biologically-plausible computations, to incorporate internal noise, and/or to 
incorporate other plausible biological limitations (e.g., response nonlinearities, foveation, etc.).  

One simplifying, and more biologically plausible, computation is to perform planar cross 
correlation locally, and then combine the local slant and distance estimates over the whole test 
region (Jones & Malik, 1992; Super & Klarquist, 1997; see also Wildes, 1991). We will call this 
the “local planar cross correlation” (LPCC) model.  

The most simplifying assumption is that the structured patterns of disparity produced by 
slanted surfaces (e.g., disparity patterns that are structured in orientation and scale) are not 
used directly to estimate 3D surface orientation.  This assumption is made by most models of 
human stereo vision. Here we implement this simpler hypothesis by computing disparity at 
each location using “standard cross correlation” (SCC) (Tyler & Julesz, 1978; Cormack et al, 
1991; Banks et al., 2004).  The estimated slant is then computed by combining the distances 
specified by the disparities. Formally, this SCC model is a special case of LPCC model where the 
local slant is assumed to be zero (see Methods and Appendix).  The SCC model uses only local 
disparities in position. Models based on standard cross-correlation have been successful in 
accounting for many aspects of human disparity discrimination (Banks et al., 2004; Cormack et 
al., 1991; Filippini & Banks, 2009; Tyler & Julesz, 1978), and in explaining the response 
properties of disparity-selective neurons in visual cortex (Ohzawa et al., 1990; DeAngelis et al., 
1991; Ohzawa et al., 1997; Cumming & DeAngelis, 2001). 

It has long been known that introducing an orientation or scale difference between the left and 
right images can produce vivid perceptions of surface slant (Wheatstone, 1838; Ogle, 1938; 
Blakemore, 1970a).   These results seem to suggest that structured patterns of disparity in 
orientation and scale are directly exploited by the visual system to estimate 3D surface 
orientation.  However, these structured disparity patterns are confounded with local horizontal 
disparities. Thus, it has been difficult to rule out the hypothesis that horizontal disparities are 
computed first and then later combined to determine 3D surface orientation (Fiorentini & 
Maffei, 1971; Wilson, 1976; Mitchison & McKee, 1990; Cagenello & Rogers, 1993; Halpern et 
al., 1996; Greenwald & Knill, 2009).  

In the current study, we measured slant discrimination thresholds for the human and model 
observers as a function of reference slant and the level of white noise, uncorrelated samples of 
which were added to each eye’s image. As expected, we found that the PCC model had the 
lowest thresholds, followed by the LPCC model, the SCC model, and finally the human subjects.  
All three models capture the qualitative trends in the human thresholds, but none provide good 

quantitative predictions of the trends, even when their average sensitivities ( d  values) are 
scaled by an arbitrary efficiency parameter. However, if we include another known factor, 
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internal noise, all three models make good quantitative predictions.  Specifically, we include a 
fixed low level of internal estimation noise. With this internal noise, the predictions are equally 
good for all three human observers (although each observer requires a different overall 
efficiency scalar). We also measured depth discrimination, in addition to slant discrimination, 
with the same stimuli and found that there was a trend for human observers to be more 
efficient (relative to ideal) at slant discrimination than at depth discrimination.  We find that the 
PCC and LPCC computations are more accurate at slant estimation than the SCC computation, 
and thus there should have been evolutionary pressure to incorporate equivalent computations 
into the early visual system. 

 

Methods 

Subjects 

Three experienced psychophysical observers (two males and one female) served as subjects. 
They each had normal or corrected to normal spatial and stereo acuity. Written informed 
consent was obtained for all observers in accordance with The University of Texas at Austin 
Institutional Review Board. 

Apparatus 

Stimuli were presented using a Planar PX2611W stereoscopic display (Planar Systems, 
Beaverton, OR). This display consists of two monitors with orthogonal linear polarization 
relative to each other, separated by a polarization-preserving beam splitter. Subjects wore 
passive linearizing filters to view binocular stereo stimuli. In all experiments, subjects used a 
forehead rest to maintain constant viewing distance. Each monitor was gamma-corrected to 
produce a linear relationship between pixel values and output luminance. Luminance was 
measured with a photometer (PR 655, Photo Research; Syracuse, NY) through the beam splitter 
and a polarizing lens. The background luminance of the two monitors was 46.73 and 52.04 
cd/m2. All experiments and analyses were done using custom code written in MATLAB using the 
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). 

Stimuli 

The stimuli (Figure 4) were stereo images centered on a display screen located at a distance of 
100 cm from the eyes. The stimulus consisted of two surfaces: a relatively large rectangular 
surround reference plane (with an angular central height of 9o), and a smaller central test plane 
(see Figure 4A). The slants of both the reference and test planes were varied; the tilts of the 
reference and test planes were always zero (i.e., both surfaces were slanted about a vertical 
axis). In 3D space, the rectangular reference plane had a fixed width (23 cm) and height (16 cm), 
and the center of the reference plane was located at a distance of 102 cm (i.e., 2 cm behind the 
display screen). There was a “window” (hole) in the reference plane that subtended 4.2o x 3.10 
in the right eye, independent of the slant of the reference plane.  Thus, the window size varied 
in the left eye when the slant of the reference plane was varied. The test plane was centered in 
the window of the reference plane. On each trial, an independent sample of spatial Gaussian 
white noise was added to the window regions of the left- and right-eye images. The reference 
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slant and additive noise contrast were parametrically varied: reference slants = 0o, 12.5o , 
25o, 50o ; root-mean-square (RMS) noise contrasts = 5%, 17.5%, 34%. The slant of the test 
plane was varied to obtain psychometric functions for slant discrimination (see below). The 
stereo images were rendered assuming an interocular distance of 6.5 cm (the interocular 
distances of the three subjects are 6.5, 6.5, and 6.2 cm). 

Figure 4. Stimuli and task in the slant and depth discrimination experiments. A. Example binocular stimulus 
(crossed). The actual stimuli were presented in a stereo rig where orthogonally-polarized left- and right-eye images 
alternated at 60 Hz, and were viewed through polarization-selective filters. The rectangular reference plane was 
densely textured, had a central window/hole, and was rendered at a distance of 102 cm. The central test plane 
was a trapezoid jittered in distance and aspect ratio to reduce the usability of monocular perspective cues. On 
each trial an independent sample of white noise was added to the window region in the left- and right-eye images. 
B. As illustrated in a top-down view, the subjects’ task was to judge whether the central test plane was more or 
less slanted that the reference plane. Subjects had unlimited viewing time and responded by rotating a knob 
clockwise or counter clockwise. C. Top down view of the depth discrimination experiment. The reference plane 
was frontoparallel and the subject judged whether the slanted test plane was near or far. 

When a planar surface is slanted, monocular slant cues are created due to perspective 
projection. Our main interest here was in the stereo cues, and thus steps were taken to reduce 
the usefulness of the monocular cues. The effectiveness of these steps was confirmed with a 
monocular control experiment (see below). First, we randomly varied the distance of the test 
plane from 99-101 cm across trials, thereby jittering its retinal-image size.  Second, we fixed the 
width and central height of the test plane in the right eye to 2.2 o of visual angle and jittered the 
ratio of the left and right edge heights of the test plane. This jitter creates 3D test plane 
surfaces that are trapezoidal in shape. The average edge-height ratio was set equal to what 
would be expected for a rectangle having the same slant as the reference plane. The range of 
the random jitter around this ratio matched the range of ratios expected for a rectangular test 
plane varying over the range of test slants used to measure the psychometric function with the 
steepest slant (50o). This procedure strongly reduces the usefulness of monocular shape cues to 
slant estimation, while introducing a relatively small amount of jitter. Even with the jitter, some 
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monocular cues for slant remained because the surface texture in the test plane was accurately 
rendered. 

The texture of the planes was generated by summing 59 sinewaves having spatial frequencies 
of constant amplitude ranging between 0.1 and 3 cycles per degree (cpd) in steps 0.05 cpd, with 
the phase and orientation of each sinewave randomly sampled from a uniform distribution over 

all possible values (0 to ). The advantage of creating textures by summing sinewaves is that it 
is possible to avoid interpolation artifacts. For each pixel location, for each eye, there is an 
exact formula for the real-valued gray level for each sine-wave component on any 3D planar 
surface. Given these values, we then then summed the gray levels for all the components to 
obtain the exact real-valued gray level at each image pixel location, and then be gamma-
compressed and appropriately quantized them for presentation. The textures on the reference 
and test planes were generated separately, and both had an average RMS contrast of 14.7% 
before addition of the uncorrelated white noise. 

One difference between the task used here and tasks used in previous investigations of slant 
discrimination is that the task is arguably more typical of natural conditions. Typically, the two 
surfaces whose slants are being compared are presented in two different temporal intervals 
(Knill & Saunders, 2003; Hillis et al., 2004; Girshick &Banks, 2009). Under natural conditions, 
surfaces that are being compared are often at different distances and are often viewed 
simultaneously. Also, in order to isolate binocular disparity cues, many previous studies have 
used sparse random-dot stereograms. However, most natural surfaces have a dense irregular 
texture (e.g., tree bark).  

Procedure 

The experiment was performed under free-viewing conditions without a fixation point, 
although a chin and head rest were used to fix the head position. Observers were asked to 
indicate, in a forced choice task, whether the test plane was more or less slanted than the 
reference plane. To indicate their decision, observers simply turned a knob (PowerMate 
wireless controller Griffin Technology, Irvine, CA) in the direction in which the test plane was 
rotated relative to the reference plane. Observers found this method of response much more 
intuitive than a keypress. The stimulus was present until the observer made a response. The 
average trial duration was 4.7 seconds. The next stimulus appeared after a 1.5 s blank interval.  

Each observer completed eight experimental sessions, where the magnitude of the reference 
slant was held fixed at one of the four values (0o, 12.5o, 25o and 50o). Each session 
consisted of four blocks of trials. The first block was a practice block where the number of trials 
was half that of the other blocks and with feedback given on each trial. Practice blocks were not 
included in the data analysis. No feedback was given in the remaining three experimental 
blocks (160 trials per block). In each of these three blocks the noise contrast was fixed at one 
the three values (5%, 17.5%, 34%). Within a session, the order of these blocks was either 
ascending or descending, and in the later repeat of that session the order of the noise contrasts 
was reversed. All 160 trials in a block had a fixed reference slant magnitude, but the sign of the 
reference slant was different for the first and second halves of the trials in the block (e.g., 25o in 
the first half and -25o in the second half). We combined all trials having the same magnitude of 
slant and hence there was a total of 360 trials per condition.  
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Within each block, a psychometric function was measured by varying the slant of the test plane 
relative to the fixed reference plane. There were eight levels of slant per psychometric function 
presented in a random order. The texture of the test plane was different on each trial. The 
texture of the reference plane was different in each block. All observers made judgments for 
the same stimuli, with a different random order for each observer. 

Control Experiments 

We ran two control experiments in addition to the main experiment, . The first control 
experiment was a slant-discrimination experiment where the viewing was monocular. 
Measurements (a total of 160 trials per white-noise level) were only made for the steepest 
slant, because those stimuli contain the steepest texture gradient, and thus the most reliable 
monocular information (Knill, 1998; Hillis et al., 2004). The stimuli were constructed using the 
same rules as those in the main experiment, but observers viewed the stimuli with a patch over 
the right eye. For all noise levels and slant differences between test and reference plane used in 
the actual experiment, the three observers performed at chance. 

In the second control experiment, the three observers were asked to discriminate the depth 
rather than the slant of the test plane relative to the reference plane (see Figure 3C). The 
reference plane was given a 0o slant and was rendered at a distance of 100 cm. The slant of the 
test plane was fixed at either -44o or 44o so that the near and far edges of the test plane in 3D 
space were approximately 2 cm in front and behind the reference plane.  The test plane was 
slanted so that the disparity pedestal values (difference in baseline disparity from zero 
disparity) were similar to those in the main experiment. In depth discrimination experiments it 
is known that threshold tends to increase with the magnitude of the disparity pedestal 
(Blakemore, 1970b; Schumer & Julesz, 1984; Badcock & Schor, 1985; Stevenson et al., 1992). 
Thus, for comparing human efficiency in the two tasks it is best to keep the average pedestal 
disparities similar. 

Depth discrimination of the test plane was measured as function of noise contrast. Each 
participant completed two sessions, one in increasing order of noise contrast and one in 
decreasing order. Each session consisted of three pairs of blocks, one pair for each noise 
contrast. The first block in each pair had half the number of trials, and feedback was provided. 
There was no feedback in the second block of each pair. There were 80 trials in each no-
feedback block. The data from the feedback blocks (40 trials) was not used in the analysis. To 
measure psychometric functions, the depth difference between the reference and test planes 
varied within the block. There were eight depth difference levels presented in random order. 
The observers’ task was to report whether the center of the test plane was closer or further 
than the reference plane. As in the main experiment, different random textures were 
generated for each trial, and all observers made judgments for the same stimuli. The only 
difference was that the order of the stimuli was randomly different for each observer. 

Analysis Methods 

For non-zero reference slants the response data was the percentage of “more-slanted” 
responses as function of the angular difference between test and reference planes. For the zero 
reference slant (frontoparallel reference plane) the response data was the percentage of 
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“slanted-left” responses as a function of test slant. For each combination of reference-slant 
magnitude and noise contrast, we first merged the psychometric data for the two reference-
slant orientations having the same magnitude (e.g., 50o and -50o). The psychometric data for 
each condition and subject was then fitted with a cumulative Gaussian function using maximum 
likelihood, 

( )"more slanted"
2

s
p





 − 
= 

 
      (1) 

where s is the test slant minus the reference slant,   is the standard deviation parameter, 
and   is the bias parameter. The bias parameter corresponds to the 50% point of the 

psychometric function, and the value of the standard deviation was defined to be the 

threshold. Note that the discriminability, d , equals s  . We define threshold to be the value 

of s  for which 1d = . 

Not surprisingly, given the well-known individual differences in stereo acuity (Coutant & 
Westheimer, 1993; Bohr & Read, 2013), there were substantial differences in overall 
performance level between the three observers. However, the three pair-wise correlations 
between participants' thresholds were quite high (0.967, 0.973, 0.962). Therefore, to better see 
the average trends, we scaled the thresholds of two of the observers so that their average 
threshold was the same as the average threshold of the intermediate performing observer. The 
scale factor for the more sensitive observer was 0.68 and for the less sensitive observer was 
2.01. These same scale factors were also used to scale the biases. 

The control experiments were analyzed using the same procedures. However, for the control 
experiment on depth discrimination, the differences in overall performance between observers 
were not as large, so the data was averaged without scaling. 

 

Models 

We consider an approximate ideal observer and several suboptimal observers. In all cases, the 
input to the model is the pair of left and right images produced by the test plane. For 
mathematical convenience we assume a zero vergence angle and a cyclopean image plane that 
is perpendicular to the optic axes (Figure 2). More general cases are described in the Appendix. 
However, we note that as long as the orientations of the eyes and the shape of the imaging 
surfaces are known, then the information available for estimating surface slant remains largely 
invariant. Thus, the performance of the models for the geometry in Figure 2 is quite general. Of 
course, the specific computations of the models depend on the orientations of the eyes and 
shape of the imaging surfaces. 

Approximate Ideal Observer: Planar Cross Correlation (PCC) 

Derivation of the exact ideal observer would start with a statistical description of the 3D 
surfaces, a deterministic description of the imaging geometry, a statistical description of the 
uncorrelated noise added to the two images, a description of the prior probability on surface 
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slant and distance, and a description of the cost function for the task. The derivation would 
then involve solving for the specific computations that minimize the cost function. The exact 
derivation was not practical for our particular stimuli, but given our past experience with similar 
models, we think that the computations described below should be a close approximation to 
ideal. 

As mentioned earlier, we assume that the geometrical relationship between the two eyes is 
completely known and fixed, and that the two test images are projections of a single planar 
surface at an unknown intercept distance and slant. In this case, it is optimal to compute the 
predicted image in one of the eyes given the image in the other eye. Specifically, for every 
possible distance and slant of the surface, the predicted left-eye image is computed from the 
right-eye image by projecting points in the right-eye image to the corresponding point in left-

eye image (see Figures 2 and 3).  The predicted real-valued location in the left image ( )ˆ ˆ,L Lx y , 

given a location ( ),R Rx y  in the right image, is given by the equations in Appendix Figure A1.  

The predicted gray level at the predicted location in the left image, is equal to the gray level in 

the right image at the original location: ( ) ( )ˆ ˆ ˆ, , ,L L L R R RI x y s I x y = .  The predicted left-eye 

image is then compared to the actual left-eye image. The estimated slant is the slant value, 
from the slant and z-intercept pair, that gives the smallest prediction error (mean squared 
error):   

( )
( ) ( )

2

, ˆ ˆ,

1ˆ ˆˆ ˆ ˆ ˆ ˆ, argmin , , ,
L L

L L L L L L
s x y

s I x y I x y s
n

 


 = − 
     (2) 

where  is the set of predicted left-eye image coordinates, ( )n   size of the set, and ˆ,̂s   are 

the estimated slant and intercept distance of the plane. 

Predictions were also generated for a few conditions using a typical normalized correlation 

error measure. It performs very similarly, but is computationally much slower.  Also, for a 

simple absolute disparity estimation task (not slant estimation), we found that these two 

measures perform similarly and well-approximate the exact ideal observer for that task (Oluk & 

Geisler,2020). 

The display was designed so that the image of the test plane in the right-eye image always had 
the same width (2.23o), which is assumed to be known by the model observers. To further 
simplify computations, the predictions were generated for a fixed height (2.12o) in the right-eye 
image, which corresponds to the minimum height produced in the experiments. This leaves out 
~5% of the informative pixels, but has a minor effect on the predictions.  

The test- and reference-plane textures were a sum of random sine waves having a maximum 
spatial frequency of 3 cpd, before rotation about the vertical axis. The image spatial frequencies 
in the test and reference plane can be higher because of the surface slant. In the experiment, 
uncorrelated white noise was added to the left- and right-eye test-plane regions.  The ideal 
observer must pre-filter the stimuli before comparing the left- and right-eye images; that is, it 
must filter out spatial-frequencies in the added white noise that do not overlap with 
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frequencies present in the signal. To approximate the optimal prefiltering, we carried out a 
preliminary analysis where we measured PCC performance for various values of the cutoff 
frequency of a low-pass filter that ramped to zero over a span of 1 cpd. This was done 
separately for each level of uncorrelated noise. We found that the optimal cutoff frequencies 
for the 5%, 17.5% and 34% noise contrasts are 16, 8, and 5 cpd, respectively. Variation in these 
cutoff frequencies by 1-2 cpd had little effect on performance.  We used this same prefiltering 
for all model observers. 

Local Planar Cross Correlation (LPCC) 

It is not biologically plausible that planar cross correction is computed in one step over the 
entire test region (especially if the test region were larger than the current 2.13o width). Thus, 
we also consider a sub-optimal version where planar cross correlation is computed over square 
right-eye patches of some given width w .  The computations for each patch are basically the 

same as described above, except the estimates are expressed as the slant îs  and distance of 

the patch îz , rather than the slant îs  and intercept distance ˆi  (see Figure 5).  Directly using 

Equation 2 for ith image patch gives 

( )
( ) ( )

2

, ,

1ˆ ˆˆ ˆ ˆ ˆ ˆ, argmin , , ,
i i L L i

i i L L L L L L i i
s i x y

s I x y I x y s
n

 


 = − 
    (3) 

The problem here is that the estimates of îs  and  ˆi  become more correlated the further the 

horizontal distance of the patch, ix , from cyclopean axis.  On the other hand, îs  and  îz  are 

nearly statistically independent everywhere. The relationship between the intercept distance 

and distance of the patch is given by tani i i iz x s = − .  Substituting into the equations in 

Appendix Figure A1 gives a formula equivalent to Equation 3, but with minimization taken over 
local slant and distance: 

( )
( ) ( )

2

, ˆ ˆ,

1 ˆˆ ˆ ˆ ˆ ˆˆ, argmin , , ,
i i L L i

i i L L L L L L i i
s z i x y

s z I x y I x y s z
n 

 = − 
     (4) 

 

Figure 5. Local planar cross correlation. Illustration of the difference between intercept distance and distance.  
Local planar cross correlation uses estimates of local slant and distance.  Standard cross correlation uses estimates 
of local distance assuming the local slant is zero.  
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Because the local slant and distance estimates are relatively independent, it is then possible to 
obtain two independent estimates of the global slant, one from the local distance estimates, 

( ) ( )
2

, 1

ˆˆ ˆ, argmin tan
n

z z i i
s i

s z x s


 
=

= − +        (5) 

and one from the local slant estimates, 

 2
1

ˆ ˆargmin
n

s i
s i

s s s
=

= −        (6) 

Finally, these two estimates can be combined using reliability-weighted cue combination, which 
is optimal for bias-corrected statistically-independent cues (Cochran 1937; Clark & Yuille 1990; 
Oruc et al. 2003): 

ˆ ˆ
ˆ z z s s

z s

r s r s
s

r r

+
=

+
         (7) 

where zr  and sr are the reliabilities of the two estimates. To measure the reliability of the slant 

estimates for each cue, we computed slant estimates (for many test patches) separately for 
each reference slant. From these estimates we then computed the bias in the slant estimates 
for each reference slant. Finally, the reliability of the estimates was determined from the 
standard deviation of a cumulative Gaussian fit to bias-corrected slant estimates, as a function 
of test-patch slant. The reliability of the slant estimates was taken to be one over the square of 
this standard deviation (i.e. the reciprocal variance). 

Standard Cross Correlation (SCC) 

As mentioned earlier, the standard cross-correlation model is a special case of the local planar 

cross-correlation model where the local slant is assumed to be zero; i.e., Equation 4 with 0is =

: 

           
( )

( ) ( )
2

ˆ ˆ,

1 ˆˆ ˆ ˆ ˆˆ argmin , , 0,
i L L i

i L L L L L L i
z i x y

z I x y I x y z
n 

 = − 
    (8) 

which is equivalent to horizontally translating each patch in the right eye to find the best match 
in the left eye to obtain an estimated disparity, and then computing the estimated distance 
given the separation between the eyes (see Figure 2). The estimated slant of the test plane is 
then obtained by applying Equation 5 to the set of estimated distances. 

Model Predictions 

Predictions were generated for two families of model observer.  The first family was the models 
as described above, with no free parameters, except for the patch width w used in the LPCC and 
SCC models (in the PCC model the patch width is the whole test plane). The predicted slant-
discrimination thresholds were obtained by simulating model-observer slant estimates as a 
function of test-plane slant for the four reference slants and three uncorrelated noise levels in 
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the human experiments. On each trial, a model observer returns an estimate of the slant of the 
test plane. This estimated slant is compared to the fixed reference slant (which was assumed to 
be known because of the reference surface’s large size, rectangular 3D shape, and absence of 
uncorrelated noise).  If the estimated slant is greater than the reference slant the model 
observer responds “more slanted.” The proportions of “more slanted” responses were then 
analyzed to obtain predicted thresholds using the same procedure used for the human 
responses.  

The second family included the same models as before, but two additional free parameters, (i) 

a fixed level of internal noise 0  added to the slant estimates of a model, and (ii) an overall 

efficiency scale factor   that scales all discriminability ( d ) values of a model down so that the 

thresholds best match the human thresholds. To obtain predicted thresholds, slant estimates 

were generated for the specific test plane slants presented to the human observers.  For each 

condition, we computed the mean and the standard deviation of the slant estimates of the 

model being fitted. From these means and standard deviations, we computed the error rates 

predicted given any assumed values of the internal noise and scale parameters. The parameters 

were estimated by maximizing likelihood. The predicted thresholds are calculated from fitted 

error rates.  An equivalent procedure was used for estimating the predicted depth-

discrimination thresholds. For more details about the model predictions see 

https://github.com/CanOluk/Stereo-Slant-Discrimination. 

 

 Results 

Slant Discrimination 

Figure 6A shows the scaled slant discrimination thresholds of the three observers (dotted 
curves) and their average thresholds (solid curves). As can be seen, thresholds increased with 
the noise contrast (plot color) and decreased with the absolute reference slant (increasing 
along the abscissa). As noted earlier, the individual human observers exhibited similar patterns 
of slant-discrimination thresholds and biases, but the thresholds differed substantially in overall 
sensitivity. To better compare the threshold and bias patterns we separately scaled the 
thresholds of the most sensitive and the least sensitive observer by an overall factor to best 
match (in squared error) the thresholds of the medium-sensitive observer; the biases were 
scaled by the same factors (see Methods).  

Figure 6B shows the biases. When the RMS contrast of the noise was 34% (blue), the 
frontoparallel test plane (slant of 0o) was perceived as if its right edge was slightly behind the 
left edge (95% confidence interval: -5.33 to -1.04 degrees), and the slanted test lanes were 
perceived as slightly more frontoparallel than their true slant (95% confidence intervals of 3o - 
6.6o, 2.3o - 5.1o, and 1.9o - 3.3o degrees for reference slants of 12.5o, 25o and 50o, respectively). 
Similar, but weaker, frontoparallel biases were found for 12.5o and 50o reference slants when 
the RMS contrast of the noise was 17.5% (95% confidence intervals of 2.2o - 4o , 0.2o - 1o, 
respectively).  A potential explanation for the frontoparallel bias is that the visual system 
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exploits knowledge of the prior probability distribution of slants in natural scenes, which have 
been found peak at a slant of zero (Burge et al., 2016). When the uncorrelated noise levels are 
high, the slant estimates necessarily become less reliable.  When this occurs, it is rational for 
the visual system to place more weight on the prior probability distribution, causing a greater 
bias toward zero slant (e.g., see Weiss, et al. 2002). 

Figure 6. The results of the slant experiment. A. Mean thresholds are shown with solid lines and individual 
thresholds are shown with dotted lines. Ninety-five confidence intervals are shown as shaded regions (see 
methods for details). B. Mean biases are shown with solid lines and individual’s biases are shown with dotted lines. 
Ninety-five confidence intervals are shown as shaded regions (see methods for details). The individual subjects 
have similar shaped threshold curves, but they differ in overall sensitivity. In this plot, the most sensitive and the 
least sensitive observer’s thresholds were each scaled by a single factor to best match the medium sensitive 
observer’s thresholds. The biases were scaled by the same factors. The two scale factors are 0.68 and 2.01. 

Figure 7 shows the absolute thresholds for the first family of model observers along with the 
most sensitive human observer on a log y-axis. The thresholds of the three model observers are 
given by the colored symbols. The PCC model has no free parameters. The LPCC and SCC 
models each had a single free parameter: the patch width w . The value of this parameter was 
set so as to maximize the performance of the SCC model. The value of the patch-width 
parameter in the LPCC  model was identical to the patch width in the best-performing SCC 
observer.  All three models outperform the best-performing human participant in the 
experiment (black symbols). As expected, the thresholds of the PCC observer (blue symbols) are 
lowest in all conditions.  The performance of the LPCC model is similar to the SCC model; 
however, if the patch width used for the LPCC observer is made larger, its performance 
improves, and (of course) asymptotes to the performance of PCC observer.  
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Figure 7. The absolute slant discrimination thresholds of three model observers and the best-performing human 
observer. The planar cross correlation (PCC) model is near optimal and has no free parameters. The standard cross-
correlation (SCC) is suboptimal. The only parameter is the cross-correlation patch width ( w ), which was picked to 

give the best overall absolute performance ( w  = 0.5o). The local planar cross correlation (LPCC) model is also 

suboptimal. Shown here is the performance with the same patch width as the best performing SCC model ( w  = 

0.5o). Shaded regions correspond to 95% bootstrapped confidence intervals. Note that in this figure (unlike Figure 
6) the thresholds are plotted on a logarithmic scale.  

Figure 8 shows the thresholds of LPCC and SCC models for different patch width values when 
the reference slant is either 12.5o or 50o (solid and dashed lines). As patch width increases, the 
SCC model thresholds become systematically worse than those of the LPCC and PCC models, 
whereas LPCC model thresholds either improve slightly or remain stable. The LPCC model is 
therefore more robust to changes in patch width. As expected, the SCC model performs 
particularly poorly when the reference slant is high because it is the condition when the implicit 
assumption of frontoparallel surfaces is most inaccurate. Lastly, the difference between LPCC 
and SCC is highest when the noise is low, probably because the effect of external noise tends to 
exceed the effect of the differences in specific computations. 

Figure 8. The change in absolute slant discrimination thresholds of LPCC and SCC model observers as function of 
patch width. The patch width for the PCC model was the full size of the target in the right eye (2.2  o). The solid lines 
correspond to 12.5 o reference slant and dashed lines correspond to 50 o reference slant. Shaded regions 
correspond to 95% bootstrapped confidence intervals. Note that the thresholds are plotted on a logarithmic scale. 
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Figure 9 shows the maximum-likelihood fits of the three models (dashed curves) to the average 

thresholds in Figure 6A, when the patch width (w), estimation-noise standard deviation ( 0 ) 

and overall efficiency scale factor ( ) were allowed to vary (only 0  and   were allowed to 

vary for the PCC model). Note that although the fits were obtained by maximizing likelihood, 
we report the root-mean-squared error (RMSE) in the figure because it is more intuitive. The 
predicted rate in fall-off in the thresholds with reference slant is similar to that in the human 

observers. Note that the best fitting values of 0  are quite small, on the order of 1o – 1.5o, and 

hence are in a plausible range. Surprisingly, the predictions are about equally good for the three 
models, suggesting that the data are not sufficient to differentiate between the models. 

 

Figure 9. Model fits.  For each model observer, the patch width (w), scale factor ( ), and estimation noise 

standard deviation ( 0 ) were estimated by maximizing the likelihood of the data. The patch width for the PCC 

model was the full size of the target in the right eye (2.2o). Although the parameters were estimated by maximizing 
likelihood, the goodness-of-fit measure shown in the figure is the RMSE, which is more intuitive. 
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Figures 10A and 10B plot goodness-of-fit measures (RMSE and negative log-likelihood 
respectively) as a function of patch width. The arrows in Figure 10A indicate the patch widths of 
the predictions shown in Figure 9. They correspond to the best fits in terms of RMSE. Both plots 
show that including the estimation-noise parameter greatly improves model predictions 
(shaded regions are 68% confidence intervals). Figure 10C shows the maximum-likelihood-
parameter estimates of each model (symbol color) for each patch width (symbol size). The 
estimated noise and scalar parameters are largest for the SCC model, smaller for the LPCC 
model, and smallest for the PCC model. 

  

Figure 10. Results of the model fitting procedure. A. Root-mean squared error (RMSE) for the three models as a 

function of patch width. The arrows indicate the smallest RMSE for the SCC and LPCC models. The parameters 

were actually estimated by maximizing likelihood (minimizing negative log likelihood).  B. Negative log likelihood 

for the three models as a function of patch width. For the SCC model the RMSE and negative log likelihood are 

minimal at the same patch width.  For the LPCC model the RMSE is minimal at 0.75 but the negative log likelihood 

is minimal at 0.25. C. Estimated scale factor and estimation-noise standard deviation for the three models. For the 
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LPCC and SCC models, increasing symbol size represents increasing patch width (0.25, 0.5, 0.75, and 1 visual 

degree respectively). Error bars are 68% bootstrapped confidence intervals. 

In a control experiment, participants performed the slant discrimination experiment with the 
right eye covered to determine the usefulness of monocular cues. The tested slant was 50o 
because this was the largest slant magnitude in the main experiment and because perspective 
(monocular) cues are strongest in this case (Knill, 1998). Psychometric functions were measured 
for all three noise levels. It was not possible to estimate thresholds, because the slopes of the 
psychometric functions were always near zero. We conclude that the human slant 
discrimination thresholds were based entirely on binocular (stereo) cues. 

Depth Discrimination 

Figure 11A shows the depth discrimination thresholds of the three observers (dotted curves) 
and their average (solid curve), and Figure 11B shows the biases. The individual differences 
were less in this experiment than in the slant-discrimination experiment, and hence there is no 
scaling of the thresholds for the least and most sensitive participants. As can be seen, human 
thresholds increase with noise contrast. When the noise is highest (34% RMS), there is also a 
small bias in two of the subjects to see the test plane slightly farther than the reference plane 
(the 95% confidence interval of the average bias is 3.9 to 19.8 arc sec). 

Figure 11. The results of the depth experiment. A. Mean thresholds are shown with solid lines and individual 
thresholds are shown with dotted lines. Ninety-five confidence intervals are shown as shaded regions (see 
methods for details). B. Mean biases are shown with solid lines and individual’s biases are shown with dotted lines. 
Ninety-five confidence intervals are shown as shaded regions (see methods for details). 

Similar to the slant experiment, the depth discrimination thresholds of the optimal PCC model 
are better than those of the LPCC and SCC models (1.3 seconds of arc better on average). 
Thresholds of LPCC and SCC models are generally similar but the performance of LPCC is 
considerably better than SCC in the low noise condition for 0.75 o and 1 o patch widths (0.5 and 
1.5 seconds of arc better respectively). 
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The maximum likelihood fits of the three models to the data revealed similar results to the slant 
experiment. Without the estimation noise parameter, the three models do not fit the 
thresholds well (RMSE: around 30 seconds of arc, or 2.2 mm). When the estimation noise 
parameter had a standard deviation 5-7 seconds of arc (0.3-0.5 mm), all three observer models 
fit the thresholds quite well (RMSE: approximately 1 second of arc or 0.07 mm).  

Recall that in the depth experiment the slant of the reference plane was zero, but the test plane 

was slanted at 44o. This was done so that the pedestal-disparity values were similar to those in 

the main experiment, making it easier to compare human efficiency for slant and depth 

discrimination. The PCC observer is approximately ideal for both slant and depth discrimination. 

Thus, it is possible to compare absolute efficiencies in the two tasks. The efficiency scale factors 

for aligning the PCC thresholds with each participant’s thresholds in the high noise conditions 

are shown in Figure 12A.  For two participants (P1 and P2), there is a trend for human efficiency 

to be higher in the slant discrimination experiment. 

Figure 12. The efficiency scale factors estimated from two different experiments. A. Using the PCC Model, for three 
participants, scale factors estimated by maximizing the likelihood of the data of the highest noise condition either 
for slant (50-degree reference slant condition) or depth experiment. 68% bootstrapped confidence intervals are 
shown with error bars. B. Using the SCC model observer, for three participants, scale factors estimated by 
maximizing the likelihood of the data of the highest noise condition either for slant (50-degree reference slant 
condition) or depth experiment. 68% bootstrapped confidence intervals are shown with error bars. 

It is also possible to estimate the efficiency scale factors for the SCC model. For all participants, 
the efficiency is higher in the slant experiment, and the confidence intervals do not overlap 
(Figure 12B).  Overall, humans appear to be more efficient at estimating surface slant than 
surface distance.  

Discussion 

We derived the approximate binocular ideal observer for discrimination of the 3D orientation 
and distance of textured planar surfaces viewed in the presence of additive white noise that is 
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uncorrelated across the two eyes.  This planar-cross-correlation (PCC) observer first filters the 
left and right images, based on the known frequency content of the texture, to remove 
irrelevant frequency components due to the white noise. Using projective geometry, the PCC 
observer then generates a predicted left image from the right image (or vice versa) for each 
possible 3D orientation and distance of the test plane.  The estimated surface orientation and 
distance are the values that make the most accurate prediction of the left image (i.e., give the 
smallest mean-squared error). We also considered two sub-optimal observers that also pre-
filter the left and right images. The local planar cross correlation (LPCC) observer uses the same 
fundamental computations as the PCC observer, but it makes multiple local estimates of the 3D 
orientation and distance in local image regions, and then combines those local estimates to 
obtain a single estimate of the 3D orientation and distance of the entire test plane.  The 
standard cross-correlation (SCC) observer uses projective geometry to estimate the distance of 
local image regions under the assumption that the local surface slant is zero. It then combines 
those estimates to obtain an estimate of the 3D orientation and distance of the test plane. Each 
of the three model observers has two free parameters: an overall efficiency parameter and a 
parameter representing a fixed level of internal estimation noise. 

In terms of absolute performance, the PCC observer performs substantially better than the 
LPCC and SCC observers, because it optimally combines all the disparity information over the 
approximately 2o x 2o test plane.  The LPCC observer performs better than the SCC observer, 
especially for larger patch sizes and slants, and it is also less affected by patch size and surface 
slant (it is more robust) than the SCC observer. 

We compared the performance of these model observers with human observers in a stereo 
slant-discrimination experiment.  Human thresholds were measured as a function of the 
reference slant and the noise contrast of separate samples of white noise added to the left-eye 
and right-eye images.  Human thresholds decreased with the slant of the reference plane and 
increased with the level of uncorrelated noise. The pattern of thresholds was consistent across 
the three human observers.  In control experiments, we found that the human thresholds were 
based on stereo cues alone, and that there is a trend for humans to be more efficient at slant 
discrimination than depth discrimination.  All three models were able to predict the measured 
thresholds with approximately equal quantitative accuracy. 

Binocular differences and the correspondence problem 

One way to describe the difference between left and right images (for the imaging geometry in 

Figure 2) is in terms of corresponding points:  for planar (and many other) surfaces, each point 

on the surface projects to corresponding points in the right and left images. The corresponding 

image points can be described by a single horizontal disparity (translation). If one knows all of 

the corresponding points (i.e., all the horizontal disparities), as well as the geometry of the 

imaging surfaces for the two eyes, then one has a complete description of the binocular 

information concerning the orientation and distance of the planar surface.  Thus, one 

hypothesis for how the visual system estimates surface orientation and distance is that it first 

determines all the horizontal disparities (corresponding points) and then estimates the surface 

orientation and distance from the set of disparities. 
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Determining the corresponding points can appear difficult if one literally thinks about finding a 

“point” in one eye that corresponds to a point in the other: the so-called “correspondence 

problem”.  Various proposals for how to solve the correspondence problem have been tested in 

the human and computer-vision/image-processing literature. In most, some region around each 

point is selected in one eye’s image and then translated (and perhaps also distorted) to find the 

best matching region in the other eye’s image.  The horizontal translation between the centers 

of the best-matching regions in the two eyes is the estimate of the horizontal disparity (the 

corresponding point) for that point. Ironically, random element stereograms of frontoparallel 

surfaces, once considered the ultimate demonstration of the correspondence problem, are 

trivial to match using such local region translation methods (i.e., standard cross correlation). 

Another way to describe the differences between the left and right images is by describing the 

back-projection mapping between the spatial pattern of gray levels in the two images.  Planar 

cross correlation (PCC) obtains this description by finding the 3D surface orientation and 

distance that best explains the difference between the two images. The estimated horizontal 

disparities of the corresponding points are implicit in the estimated surface orientation and 

distance, but are never directly estimated. The same logic holds for local planar cross 

correlation (LPCC).  It finds the 3D orientation and distance that best explains the difference 

between image patches in the two images.  Although standard cross correlation (SCC) can be 

described as a special case of local planar cross correlation, it is most natural to conceptualize it 

as the traditional approach of first directly solving the correspondence problem (estimating the 

disparity) for each image point and then estimating the surface distance and orientation from 

the disparities. 

Both ways of describing the differences between the left and right images are valid, but they 

suggest different hypotheses for neural mechanisms.  The first description most naturally leads 

to the hypothesis that early receptive fields are explicitly coding binocular differences in 

horizontal phase and position (horizontal disparities), and that these are integrated in later 

areas to yield receptive fields sensitive to distance and surface orientation. 

The second description most naturally leads to the hypothesis that early binocular receptive 
fields are explicitly coding the spatially structured patterns of binocular differences that are 
produced by back-projection of planar surfaces. For example, Figure 13 shows the binocular 
receptive fields that would respond best to a sinewave textured surface at 100 cm, with a slant 
of 45 deg, for five different tilts.  To emphasize the shape differences between to left and right 
receptive fields, the imaging plane was set to the same distance as the surface (100 cm).  If the 
imaging plane was instead set at plus or minus 17 mm (the location of the retinas), then the left 
and right receptive fields would also differ in position.  When the surface tilt is 0 deg (see Fig. 
1B), the left and right receptive fields differ primarily in scale/frequency.  When the surface tilt 
is 90 deg the left and right receptive fields differ primarily in orientation.  For other tilts there 
are scale, orientation and shear differences (see also Figure 3). The third column shows the 
differences between the left and right receptive fields. Figure 12B shows how the total energy 
of the difference of the left and right receptive fields varies with slant and tilt. The energy tends 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434881
http://creativecommons.org/licenses/by/4.0/


23 
 

to increase with slant and decrease with tilt, although this latter effect is quite small for low 
slants. 

Figure 13  Hypothetical binocular receptive fields tuned to surface orientation and distance.  A. Examples: right eye 
receptive field (RE), left eye receptive field (LE) , difference between right and left eye receptive fields.  B. Energy 
of the difference between right and left receptive fields as a function of tilt, for several different slants. 

Although the LPCC and the PCC observers demonstrate that structured disparity patterns 
provide substantial additional information for slant discrimination and estimation (see also, 
Jones & Malik, 1992; Super & Klarquist, 1997; Ogale & Aloimonos, 2005; Li & Zucker, 2010; 
Vidal-Naquet & Gepshtein, 2012), there remains uncertainty about the extent to which 
structured disparity patterns are explicitly exploited in the visual system, and at what stages of 
visual processing. 

Single unit recordings in primary visual cortex of monkey and cat have found populations of 
neurons with binocular receptive fields that are consistent with structured disparity patterns in 
orientation (Bridge & Cumming, 2001) and spatial frequency (Sanada & Ohzawa, 2006). 
However, modeling with generalized versions of the disparity energy model originally 
introduced by Ohzawa et al. (1990) showed that most of the useful disparity information is 
carried by standard horizontal disparity detectors (Bridge & Cumming, 2001; Bridge et al., 2001; 
Sanada & Ohzawa, 2006).  Nonetheless, these models do not consider all of the structured 
disparity patterns associated with planar surfaces (see Figure 13).  Also, the possible benefits of 
including information about structural disparity patterns may better emerge in models of 
population decoding that pool efficiently over all the relevant neurons (Bridge & Cumming, 
2008; Greenwald & Knill, 2009; Kato et al., 2016). 
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Psychophysical studies have also not yet provided a clear picture of the role of structured 
disparity patterns. Studies that have focused on structured disparity patterns have revealed 
that it is difficult to reject simple SCC type models (Halpern et al., 1996; Hibbard & Langley, 
1998; Greenwald & Knill, 2009).  Studies that have either reported evidence for SCC-type 
computations (Banks et al., 2004; Filippini & Banks, 2009; Allenmark & Read, 2011; Goutcher & 
Hibbard, 2014) or for LPCC-type computations (Hibbard et al., 2002), generally have not directly 
compared the models. Thus, there does not appear to be compelling evidence either for or 
against the visual system’s use of structured disparity patterns. Nonetheless, we (and others) 
have shown that PCC and LPCC type computations are more accurate at slant estimation under 
naturalistic conditions than the simple SCC computation.  Thus, there should have been 
evolutionary pressure to incorporate similar computations into the early visual system. 

Finally, it is important to note that while the PCC model is approximately optimal for estimating 
the slant and distance of planar textured surfaces (with uncorrelated image noise), it is not 
optimal under real-world conditions, where many surfaces are non-planar and where there are 
half occlusions (points with no corresponding point in the other eye).  More sophisticated 
computations are required in natural 3D scenes (Scharstein & Szeliski, 2002; Hirschmuller & 
Scharstein, 2007). The human visual system is likely to be much more sophisticated than the 
models considered here. 

There are additional research approaches that could be useful for discriminating between the 
different model described here. One approach is to vary stimulus parameters, such as the size 
and spatial-frequency content of the test patches and the range of test slants and tilts, to find 
those parameter values where the models make the biggest differences in the predicted 
pattern of slant thresholds. Testing with these parameter values should better differentiate 
between the models.  Another approach is to consider what specific computations are optimal 
for natural images. For example, Burge & Geisler (2014) used accuracy maximization analysis 
(AMA) of natural images to determine the set of vertically-oriented binocular receptive fields 
that are optimal as a population for estimation of local disparity. The receptive fields in this 
population share many properties with receptive fields measured in visual cortex. It should be 
possible to perform a similar analysis to determine the optimal population of binocular 
receptive fields for estimating surface slant or surface slant and distance of natural images. This 
type of normative analysis could be used to guide investigations of receptive-field properties in 
cortex that may capitalize upon the structured disparity patterns that result from binocularly-
viewed slanted surfaces. 

Coordinate systems and the representation of surface orientation 

The equations in Appendix Figure A1 are based on projecting the scene onto an image plane.  
This is the common framework for representing camera images and leads to the simple 
equations used here.  In vision science, it is also common to represent images in spherical 
coordinates, which is equivalent to projecting the scene onto spherical surfaces centered on the 
nodal point of each eye. If desired, it is straightforward to convert the equations in Figure A1 
into spherical coordinates (azimuth and elevation) by substitution.  It is also common in vision 
science to consider cases where the eyes are not in primary position (pointing straight ahead). 
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In the Appendix we provide formulas for generalizing the closed-form expressions in Figure A1 
to the case where each eye is rotated arbitrarily about the three axes. 

Throughout this manuscript, estimates of surface orientation and distance were made in a 
headcentric coordinate system. The matching computations could also be used to make 
estimates in direction-centered coordinate systems.  For example, the direction-centered 
coordinate system for each image location could be defined as one aligned with the axis passing 
through that image location and the origin—direction-centered coordinate systems are 
illustrated in Figures 2C.  A plausible hypothesis is that local surface orientation and distance 
are initially estimated in local direction-centric coordinates.  These estimates might be used 
when the observer is tasked with reporting local surface slants with respect to a direction. 
These local measurements might then be mapped into headcentric coordinates, where they are 
grouped into 3D surfaces.  Importantly, the grouping rules are often simpler in headcentric 
coordinates than in direction-centric coordinates.  For example, with the representation in 
Figure 2B, one can use simple similarity grouping to group estimated local slants into a 3D 
plane, but similarity grouping would not work for the representation in Figure 2C.  Also, as 
Backus et al. (1999) note, mapping into head-centric and body-centric representations are 
important for implementing motor behaviors. 

 

Conclusion 

Stereo slant discrimination performance was measured for accurately-rendered textured 
surfaces designed so that performance is dominated by binocular-disparity cues.  We compared 
human performance with model observers (PCC and LPCC) that simultaneously estimate 
distance and surface orientation without directly estimating disparities and with a model 
observer (SCC) that first directly estimates disparities and then combines those to estimate 
distance and surface orientation. We found that the pattern of human slant-discrimination 
thresholds was predicted equally well by all three models.  However, we find that the PCC and 
LPCC models perform substantially better at slant discrimination; hence, there should have 
been evolutionary pressure to incorporate similar computations into the early visual system. 
We also mention additional research approaches that may better differentiate between the 
models. 
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Appendix 

Projection of planar surfaces 

Here we derive the exact equations for mapping a point in the right image to the corresponding 
point in the left image given a planar surface at an intercept distance of  , with a slant of s  

and a tilt of  , for the imaging geometry illustrated in Figure 2. The equations are shown in 
Figure A1. These equations are for arbitrary slant, tilt, and distance, but for the current 
experiments the tilt was set to zero.  

Planar cross correlation (PCC) is implemented by applying these equations to all the points in an 
image patch in the right eye for each possible intercept distance, slant, and tilt of the planar 
surface.  In other words, the predicted image value (e.g., gray level) at the predicted left image 

location ( )ˆ ˆ,L Lx y is the image value at ( ),R Rx y : ( ) ( )ˆ ˆ ˆ, , ,L L L R R RI x y s I x y = . The estimate of 

distance and surface orientation are the values of distance, slant, and tilt that give the most 
accurate prediction of the left-eye image (smallest mean squared error).  

For the PCC model the image patch is the whole right image of the test plane. For local planar 
cross correlation (LPCC) and standard cross correlation (SCC), the right image patch is a smaller 
fixed-size image patch. Also, for the LPCC and SCC models, the equations are expressed in terms 
of distance z  rather than intercept distance  (see Figure 5).  The equations in Figure A1 can be 

expressed in terms of distance by setting tan cos tan sinz x s y s  = − + . Note that in the 

present experiment, where tilt is zero, tanz x s = − , and that for the SCC model z = , because 

of the assumption that 0s= . 

 

Figure A1. Equations for projecting a point in the right image to a point in the left image given a planar surface at 

an intercept distance of   having a slant of s  and a tilt of  . The distance of the image plane to the nodal point 

of each eye/camera is fz  and the separation between the nodal points is 2a . The predicted image value (e.g., 

gray level) at left image location ˆ ˆ,L Lx y  is the image value at ,R Rx y . 

The equations in Figure A1 are standard projective geometry, but are derived here to provide 
compact equations that are easy to apply. To derive the equations in Figure A1, we first note 
that if the nodal point is at the origin in 3D Euclidean space (as in Figure 2), then the standard 
equations for perspective projection are  
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fz
x x

z
 =           (A1) 

fz
y y

z
 =           (A2) 

where fz  is the distance from the nodal point to the image plane, and ( ),x y   is the point in the 

image plane. If the nodal point is shifted to the left by a distance of a (left eye point in Figure 2), 

then the point in the image plane ( ),L Lx y  is given by 

( ) f
L

z
x x a a

z
= + −          (A3) 

f
L

z
y y

z
=           (A4) 

Equations A3 and A4 are the equations in the right panel of Figure A1. If the nodal point is 
shifted to the right, then the point in the image plane is given by 

( ) f
R

z
x x a a

z
= − +          (A5) 

f
R

z
y y

z
=           (A6) 

The slant, tilt and distance at a surface point ( ), ,x y z  are defined here in global Euclidean 

coordinates as the slant, tilt, and intercept distance ( ), ,s    of the plane passing through that 

surface point (Figures 2), where the slant, tilt, and distance are with respect to the cyclopean 
axis. The intercept distance   is the intercept of the plane with the cyclopean axis. The slant s  

is defined as the magnitude of the angle (0 – 90o) between the surface normal and the 
cyclopean (or optic) axis, and the tilt   is defined as the direction (-180o – 180o) around that 
axis in which distance is changing most rapidly (the counter-clockwise angle of the parallel 
projection of the surface normal vector; see Figure 1). Using these definitions, the equation of 
the plane is  

cos tan sin tanz x s y s  = + +         (A7) 

Specifically, the textbook definition of the equation of a plane is ( ) 0p− =n x x , where n is the 

normal vector at location ( )0,0, =x . The normal vector is obtained by rotating the unit 

normal vector of the frontoparallel plane, ( )0,0, 1− , around the vertical (y) axis by angle s , and 

then rotating the resulting vector around the distance (z) axis by angle  . Substituting the 
rotated normal vector into the equation for a plane gives Equation A7. 

To derive the equations for back projection, we first rearrange Equations A5 and A6: 

( )R

f

z
x x a a

z
= − +          (A8) 
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R

f

z
y y

z
=            (A9) 

Substituting Equation A7 into Equation A8 we have 

( )
cos tan sin tan

R

f

sx sy
x x a a

z

  + +
= − +       (A10) 

Subtracting a from both sides of Equation A8 and then taking the ratio with Equation A9 we get 

( )
( )

R

R

y
y x a

x a
= −

−
          (A11) 

Substituting Equation A11 into Equation A10 gives 

( )
( )

( )
cos tan sin tanR

R
R

f

y
x s x a s

x a
x x a a

z

  + + −
−

= − +      (A12) 

Simplifying this equation gives the expression for x in Figure A1, 

( )
( )

sin tan

cos tan sin tan
R R f

f R R

x a ay s az
x

z x a s y s

 

 

− − +
=

− − −
       (A13) 

Next substitute Equation A7 into Equation A9  

cos tan sin tan
R

f

sx sy
y y

z

  + +
=        (A14) 

Rearranging Equation A11 gives 

R

R

x a
x y a

y

−
= +          (A15) 

Substituting Equation A15 into Equation A14 and simplifying gives the expression for y in Figure 
A1: 

( )
cos tan

cos tan sin tan
R R

f R R

y y a s
y

z x a s y s

 

 

+
=

− − −
      (A16) 

Finally, substituting Equations A13 and A16 into Equation A7 and simplifying gives 

( )( )
( )

cos tan sin tan

cos tan sin tan

R f R p

f R R

x z a s y z s
z

z x a s y s

   


 

+ − +
= +

− − −
     (A17) 

Equations A13, A16 and A17 are the back-projection equations in Figure A1. 

Spherical coordinates 

The binocular equations in Figure A1 can be expressed in spherical coordinates (azimuth-
longitude   and elevation-latitude e ; Fick coordinates) with respect to the nodal point for each 
eye by substituting for , , , R R L Lx y x y  using the equations: 
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tanR f Rx z a= +           (A18) 

sec tanR f R Ry z e=           (A19) 

tanL f Lx z a= −           (A20) 

sec tanL f L Ly z e=           (A21) 

These equations can be derived by starting with the textbook formulas, cos sinx R e   = , and 

siny R e = , where 2 2 2
fR x y z = + + , and then solving for x  and y .  This “gun-turret 

system” is a popular spherical coordinate system that is sometimes regarded as best for 
specifying disparities (Howard & Rogers 2012), but similar equations can be written down for 
any other spherical coordinate system (e.g., the azimuth-latitude, elevation-longitude system; 
Helmholtz coordinates). 

Eyes not in primary position 

In the human visual system, the eyes can rotate around the three axes (and may even translate 
by a small amount when rotated).  The possible rotations are largely constrained by the 
modified Listing’s law (e.g., see Howard, 2012), but for the purpose of generalizing the 
expressions in Figure A1 to different eye positions, we can allow each eye to rotate arbitrarily 
(Figure 2A). Specifically, suppose that the right eye is rotated from the primary position by 

angles, , ,Rx Ry Rz   , applied in a specific order, and that the left is rotated by angles, , ,Lx Ly Lz    

applied in the same specific order.  For example, suppose the order corresponds to the order 
they are listed above (rotate around x, then around y, and then around z). The rotation 
matrices for the three directions are given by 

( )
1 0 0

0 cos sin

0 sin cos
x x x x

x x

  

 

 
 = − 
  

Ρ         (A22) 

( )
cos 0 sin

0 1 0

sin 0 cos

y y

y y

y y

 



 

 −
 

= 
 
 

Ρ          (A23) 

( )
cos sin 0

sin cos 0

0 0 1

z z

z z z z

 

  

− 
 = 
  

Ρ         (A24) 

Here, we take the origin of the right- and left-eye coordinate systems to be the nodal point for 

that eye. Thus, a point ( ), ,x y z=x  in the cyclopean space of Figure 2 would correspond to the 

point x in the coordinate frame of the rotated right eye given by 

( ) ( ) ( )0 0
T T T T

z Rz y Ry x Rx    = + − x x Ρ Ρ Ρ x x        (A25) 

 where ( )0 a,0,0=x .  
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The binocular matching equations for general eye rotations are given by first mapping the 
location in the right eye image plane into the cyclopean space (i.e., applying the operations in 
Equation A25 in the opposite order): 

( ) ( ) ( )0 0
T T T T
R x Rx y Ry z Rz R    = + − − − − x x Ρ Ρ Ρ x x       (A26) 

where ( ), ,R R R fx y z  =x .  Next, the equations in the middle panel of Figure A1 are used to back 

project ( ), ,R R R Rx y z=x  into scene space x (note that, in general, R fz z ).  Then, the scene point 

is transformed into the left-eye coordinate frame: 

( ) ( ) ( ) 0 0
T T T T

z Lz y Ly x Lx    = + − x Ρ Ρ Ρ x x x        (A27) 

Finally, the scene point is projected to a point ( ), ,L L L fx y z  =x  in the left-eye image plane, where 

L fx xz z  =  and L fy yz z  = .  This left eye point ( ),L Lx y    corresponds to the right eye point 

( ),R Rx y  , given the assumed slant, tilt and distance.  Note that these matching left eye and right 

eye points can also be expressed in spherical coordinates (Equations A18-A21, with a set to 
zero). 

Of course, the choice of coordinate system is arbitrary, in the sense that the matching process 
returns exactly the same information (the same slant, tilt and distance estimates) in all cases, 
given that the eye positions are known. However, the vision science literature uses many 
different coordinate systems to describe binocular geometry. The same terms can have 
different meanings depending on the choice of coordinate system. The possibility for confusion 
is high. For example, in image-plane coordinates when eyes are earth horizontal and in primary 
position (c.f. Figure 2) corresponding points always have the same y-coordinates; that is, there 
are no image-plane vertical disparities (see Figures 3B and 3C).  On the other hand, in spherical 
coordinates, corresponding points have different elevation angles, and hence have angular 
vertical disparities.  The important point here is that regardless of the image coordinate system 
chosen, the present matching process properly uses all of the stereo-geometry information for 
locally planar surfaces. 
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