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Figure S1: Robustness of power law relationship between convexity and depth.
Frequency of occurrence is plotted as a function of depth for all convexities greater than
zero (light blue) and all convexities less than zero (pink) for different subsets of images
and segmenters. Dotted lines are power-law fits to the data. a) Convexity-depth
relationship for a random sampling of half of the segmentations. b) Convexity-depth
relationship for the other half of the segmentations. ¢) Convexity-depth relationship for
the human segmenter who segmented the most images (27). d) Convexity-depth
relationship for another segmenter who segmented only nine images.



Cue integration with intrinsic and extrinsic uncertainty

Johannes Burge, Charless C. Fowlkes, Martin S. Banks

An ideal observer model with extrinsic and intrinsic uncer-
tainty

To understand how information from various vi-
sual cues should be integrated, we need to dis-
tinguish two types of uncertainty. Intrinsic un-

certainty is due to properties of the visual sys-
tem such as noise in cue measurement and in

cue interpretation. Extrinsic uncertainty is due

to uncertainty in the relation between the proxi- \®

mal stimulus and the scene property of interest.
This type of uncertainty is captured by natural-

scene statistics. If an ideal observer is repeat- Figure S2: A graphical model of cue
edly presented with the same stimulus, intrinsic combination with extrinsic P(X|A) and
noise will make the observer’s response stochas- intrinsic P(Y'¢,Y*¢|X) uncertainty.

tic. Extrinsic uncertainty, on the other hand,
should not contribute to response stochasticity
because the stimulus is held fixed.

Consider the depth cues in our experiment: disparity and convexity. In normal viewing
conditions, disparity is subject to intrinsic uncertainty (e.g., noise in disparity measurement and
noise in signals, like eye position, necessary for mapping disparity into depth), but very little
extrinsic uncertainty because the mapping from depth to presented disparity is deterministic
(i.e. presented disparity depends only on depth and viewing geometry). Convexity, on the other
hand, is subject to both intrinsic uncertainty (e.g., noise in convexity measurement) and extrinsic
uncertainty because the mapping from depth to presented convexity is non-deterministic (image
region convexity depends not just on depth and viewing geometry, but on the projected shape of
the occluder). In the case of convexity, extrinsic uncertainty vastly exceeds intrinsic uncertainty
such that any noise in the convexity measurement will have negligible effect on the estimated
depth (because small changes in convexity have essentially no effect on the convexity-depth
probability distribution).

We can express this more precisely in terms of random variables shown in Figure S2. Let
A be the scene depth to be estimated by the observer, X the retinal stimulus (image) and
Y? and Y the cue measurements of disparity and convexity available to the ideal observer.
Sample a natural scene from the world. A particular depth A is related to the image of the
scene X by the distribution P(X|A) which incorporates the statistical relation between images
and scene geometry. Given the retinal stimulus X, the observer computes cues Y¢ and Y°
and uses them to estimate the value of A. When there is intrinsic noise, these computations
are subject to uncertainty. For example, previous research suggests that the disparity cue is
subject to zero-mean, additive Gaussian noise 1 whose variance is a function of X, that is,
Y = g(X) +n where g is some function that extracts the disparity cue from the sensory input



and 1 ~ N(0,03,,,(X)). The outer box in Figure S2 corresponds to sampling scenes while the
inner box indicates repeated trials where the scene A and stimulus X are held fixed and the
cues Y are recomputed.

Optimal decisions

In a 2IFC experiment, an ideal observer compares two different stimuli and judges if the first
or second has greater depth. In our analysis, we assume the posterior distribution over A given
the measurements Y¢, Y ¢ is well approximated by a Gaussian with parameters i, o? and g, 03
where these parameters are a function of the particular cue measurements y{,y§ and yg, ys.
Assuming that different error types incur equal costs, the optimal response is:

Ryl y5,v8,u5) = P(A1 > Aolyd, yf, v, y5) > 0.5
= P(A; - Az>0|y1,y1,y2,y2)>05
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where ® is the Gaussian cumulative distribution function and we have used the fact that the
difference of two Gaussian variables is Gaussian. This gives a simple decision rule: compare
the estimates of the posterior means and report which was larger. This rule also holds more
generally so long as the posterior distribution is symmetric and unimodal. The ideal observer’s
response is therefore a deterministic function of the measured cues.

Repeated trials

If there is no intrinsic uncertainty, repeated trials with the same stimulus X yield the same Y
and hence the same response R. When intrinsic uncertainty is present, the values of Y7 and Y53,
and hence p1, po, fluctuate. This results in variable responses for repeated presentations of the
identical pair of stimuli x7 and 5. To understand the effect of these fluctuations, we compute
the expected value of R across repeated experiments where the stimuli z1, x5 are fixed.

We derive an expression for E[R] assuming that the cues are conditionally independent and
yield Gaussian likelihood distributions over A centered at values pq and pe with variances o2
and o2. In general, only part of the total variance of the likelihoods ad, 02 is due to intrinsic
noise; the remainder is due to extrinsic sources. Let us assume the intrinsic noise component is
zero-mean Gaussian with variances o2, ,,0%,,.

For conditionally independent Gaussian cues, the ideal observer combines the cues to get a
posterior distribution over A with mean

Ug,ud + U?[,uc

Yd ye _
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In repeated trials, the estimate u(y?, y¢) is a linear function of two independent Gaussian random
variables and is hence itself Gaussian with the same mean m = u(y?, y¢) and variance

2 2 2 2
o o
2 c 2 d 2
=== dgim+t | 5= ) oZm
<0§+02) e 02 + o2 con



With the distribution of y in hand we can compute the expected response as

E[R]

/ (11 — p2 > 0)p(yf, yi|z1)p(ve, ys|z2)dy dyfdys dys

= P(u1 — p2 > 0|z, 22)
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To generate a psychometric curve for the ideal observer, we hold z; fixed as a standard, adjust
the comparison x2, and compute the expected response for each pairing x1,z5. In general,
this psychometric curve will not be the CDF of a Gaussian because the variance s2 in the

denominator is a function of .
Two specific cases of interest are:

e Purely intrinsic uncertainty: If we assume that the uncertainty in the likelihoods is due
entirely to intrinsic sources, then o2, , = 02 and 02, = 2. In this case, the expression
for the variance in the estimate simplifies to

2 2
2 049.

oito?
so that the response function and the expected response have exactly the same form.

e Mixed intrinsic and extrinsic uncertainty: If we assume that Y'¢ suffers only intrinsic
noise while Y is subject to only extrinsic uncertainty, then o2, , = 02 and 02, = 0, so
the mean estimate m will remain the same as before, but the second term in the expression
for the variance vanishes leaving

2 2
o
=5 5 o2
ad + Uc

Because the (extrinsic) variance of the convexity cue is quite large relative to the (intrinsic)
variance of the disparity cue, the fraction is close to 1 so s? ~ 02 and thus the slope of the
psychometric function is determined by o3.

In fitting our model (see Methods), the convexity-depth distribution is not assumed to be
Gaussian but the posterior distribution is still well approximated by a Gaussian with mean
w(Y Y = g +mgog and variance ‘7521 where my is the slope of the convexity-disparity distri-
bution associated with the convexity cue. We make the reasonable assumption that the intrinsic
uncertainty in convexity is small enough that there is little variation in the slope my during
repeated trials. Thus, the variance of the posterior mean p(Y¢,Y¢) and hence the slope of the
psychometric curve produced by the model is determined by 0% = o2, .. As a consequence, our
model fitting methodology is perfectly appropriate for these particular conditions.
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