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Optimal speed estimation in natural
image movies predicts human performance

Johannes Burge'! & Wilson S. Geisler?

Accurate perception of motion depends critically on accurate estimation of retinal motion
speed. Here we first analyse natural image movies to determine the optimal space-time
receptive fields (RFs) for encoding local motion speed in a particular direction, given
the constraints of the early visual system. Next, from the RF responses to natural stimuli, we
determine the neural computations that are optimal for combining and decoding the
responses into estimates of speed. The computations show how selective, invariant speed-
tuned units might be constructed by the nervous system. Then, in a psychophysical
experiment using matched stimuli, we show that human performance is nearly optimal.
Indeed, a single efficiency parameter accurately predicts the detailed shapes of a large set
of human psychometric functions. We conclude that many properties of speed-selective
neurons and human speed discrimination performance are predicted by the optimal
computations, and that natural stimulus variation affects optimal and human observers
almost identically.
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ccurately encoding the three-dimensional structure of the

environment, and the motion of objects and the self

through the environment requires accurately estimating
local properties of the retinal images such as defocus blur,
binocular disparity, motion direction and motion speed. Accurate
estimation of these local properties is difficult because of the
enormous complexity and variability of natural images. Thus, a
major goal of early and mid-level visual processing must be to
accurately estimate key retinal image properties despite the
irrelevant variation in natural retinal images—a form of sensory-
perceptual constancy. Here we consider the task of estimating the
speed of local retinal image motion created by natural image
movies. Accurately encoding motion signals is critical in sighted
organisms for navigating the environment and reacting appro-
priately to predators and prey.

Explicit encoding of local retinal image motion begins early in
the visual system!?. In monkeys, and presumably in humans,
many simple and complex cells in primary visual cortex (V1) are
selective for the sign of motion direction?=. Influential models
have been proposed to account for this selectivity®” 1%, Simple-
cell models are often defined by a linear space-time receptive field
(RF)®10 and complex-cell models by the sum of the squared
responses from an appropriate pair of linear space-time RFs’.
However, these standard models are poorly tuned for speed,
especially when stimulated by natural images.

More sophisticated models are required to account for the
greater speed-selectivity that is characteristic of some V1 complex
cells and middle temporal (MT) neurons. Model neurons that are
selective for both the speed and the angular direction of motion
can be obtained by combining the outputs of appropriate V1
simple and complex cells!! 14, Tn these models, however, the RF
shapes are typically chosen for mathematical convenience, and
the combination rules are based on intuitive computational
principles. Neither the RFs nor combination rules are based on
measurements of natural signals. Thus, although these models
account for many of the response properties of cells in V1 and
MT, it is not known whether neurons having these properties
provide the best substrate for motion estimation with natural
stimuli. It may be that the response properties of the cells in V1
and MT underlying motion estimation are better described by
mechanisms optimized for natural signals.

How should one determine the best linear (simple cell) RF
properties? One popular approach has been to examine which the
linear RFs 6provide an efficient sparse encoding of natural image
movies!>!®, This approach hypothesizes that motion selectivity
(and all the other kinds of selectivity) in V1 neurons result from a
coding scheme that optimizes a single general cost function that
enforces sparseness and completeness, thereby encoding a faithful
and energy efficient representation of the retinal image.
Interestingly, when applied to natural image movies, this coding
scheme produces a set of linear RFs that has some of the motion
selective properties of V1 neurons (but see the study by
Ringach!”). However, given this general cost function, there is
no reason to expect that such RFs would be particularly well-
suited for motion estimation or any other specific task. Also,
because sparse coding of moving images does not address which
of the set of RF responses should be combined or how, it does
not, by itself, say how motion should be estimated from natural
image movies.

Our view is that task-focused studies of information processing
may help us understand V1 processing better than sparse coding.
This view is informed by the hypothesis that V1 neurons were
shaped through evolution and development to support the
specific tasks the organism must perform to survive and
reproduce. Thus, V1 may be comprised of a mixture of different
sub-populations, each supporting one—or a small number

2

of—sensory-perceptual task. This is an empirical matter, but
some evidence supports it. For example, the subset of V1 complex
cells that project to motion area MT are more selective for the
sign of motion direction'®, and for motion speed'* than the
average complex cell (or simple cell) in V1.

The approach advanced here (Fig. 1) is informed by the second
hypothesis. Specifically, we developed an ideal observer for speed
estimation by analysing movies derived from natural images. The
first step of the analysis determines the set of linear space-time
RFs that encode the retinal image information most useful
for estimating speed in a given direction. The retinal image
information incorporates the front-end effects of the optics,
photoreceptor spacing, photoreceptor temporal integration and
gain control, which we take directly from the physiological
literature. Given these optimal linear RFs, the second step of the
analysis determines the rules for optimally combining the
responses of these optimal RFs (which are not speed-selective)
to obtain a population of speed-selective units with arbitrary
preferred speeds. Finally, standard population decoding of
these speed-selective units yields precise, unbiased, optimal
speed estimates (given the front-end constraints and optimal
linear RFs).

Variation in stimulus structure is an important factor limiting
the performance of the ideal observers. To see whether ideal and
human performance is limited in the same way by this variation,
we pitted ideal and human observers against each other in
matched speed discrimination tasks. Both types of observers were
shown a large random set of natural image movies; a given
movie was never shown twice. Human performance paralleled
ideal performance, although ideal performance was somewhat
more precise. More remarkably, a single free parameter,
which can represent the effects of a multiplicative internal noise
(or some other form of computational inefficiency), yielded a
close quantitative match between human and ideal observer
performance.

Our computational analysis and behavioural data show that a
task-specific analysis of natural signals predicts many properties
of speed-selective neurons in V1 and MT, and many details of
human speed discrimination performance. Critically, the optimal
speed processing rules of the ideal observer are not arbitrarily
chosen to match the properties of neurophysiological processing,
nor are they fit to match behavioural performances. Rather, they
are dictated by the task-relevant statistical properties of complex
natural stimuli.
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Figure 1 | Ideal observer analysis. The task is to obtain the most accurate
estimate of some property of the environment, in this case speed in a given
direction (component speed). The first step is to find the set of linear
receptive fields (RFs) that are optimal for speed estimation given natural
image movies and known properties of the eye's optics and retina. These
optimal RFs provide a set of responses R to each input image (note that a
given speed can produce many different input images). The second step is
to determine how the responses R should be combined to obtain the most
accurate estimate of speed, which we take to be the maximum a posteriori
(MAP) estimate (that is, the speed at which the product of the likelihood
and the prior is at maximum).
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Results

Natural motion stimuli. Our ideal observer analysis and
psychophysical experiment requires sets of movies for which the
speeds are precisely known. We generated several movie sets from
calibrated photographs of natural scenes!>?’. Movie durations
were 256 ms, a typical fixation duration. Movie speeds ranged
from —8 to 8deg/s, an ecologically relevant range. Figure 2a
shows the retinal speeds produced by a natural scene as an
observer walks past at a brisk pace (3.0 mph), while fixating a
point on the ground; the distance to the nearest point in the scene
is 7.0m.

Movies were created by texture-mapping randomly selected
patches of calibrated natural image onto planar surfaces, and then
moving the surfaces behind a stationary 1.0 deg aperture. Slanted
surfaces create non-rigid and frontoparallel surfaces create rigid
retinal image motion. We performed our ideal observer analysis
on movies with a distribution of slanted surfaces (non-rigid
motion) similar to those in natural scenes?®?!, and on
frontoparallel surfaces (rigid motion) only. There was only a
minor difference between the two (Supplementary Fig. 1). Hence,
this method for simulating natural movies should be
representative of many (but not all) cases that occur under
natural conditions?!. Future work (see Discussion) must address
how occlusions (discontinuous motion) affect optimal sensor
design??.

Figure 2b shows frames from several movies. These examples
illustrate the substantial variation in stimulus structure that
occurs across natural movies. We will see that this variation is a
critically important factor limiting the performance of the ideal
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observer, and that ideal and human performance is limited in the
same way by this variation.

The aim of our study was to determine an ideal observer for
estimatin% s3peed in a given direction (‘component-motion
speed’)!>1023-25 and to test whether human performance with
natural image movies is predicted from this ideal observer.
Movies were thus restricted to one-dimension of space by
vertically averaging each frame of the movie (Fig. 2c). Our movies
can thus be thought of as more natural versions of typical
component-motion stimuli (sinewave gratings) or less natural
(vertically averaged) versions of movies taken of the natural
environment. The vertically averaged movies can be represented
in standard space-time plots’. Note that vertically oriented RFs
respond identically to original and vertically averaged movies.
Conceptually, then, the present analysis is equivalent to
determining how to optimally estimate speed within and from
a single orientation column in V1 (Fig. 2c). Estimates of both
speed and angular direction could be obtained by combining
component-speed estimates from different orientation columns
(see Discussion). As speed increases from zero, the space-time
plot for a given patch becomes more tilted (Fig. 2b,d). The
structure of the space-time plot varies greatly even across movies
with the same speed (Fig. 2d).

Optimal speed estimation. The first step in deriving the ideal
observer for speed estimation is to discover the population of
linear RFs that are optimal for speed estimation. We use a
Bayesian method for dimensionality reduction called accuracy

Patch 1
-3 deg/s

Patch 2
-2 deg/s o

0.0 Patch 3
2 deg/s

+4.0 Patch 4

4 deg/s
+8.0

Time (ms)

o

Speed (deg/s)

-~
\
%
|
!
y’

h
\

1,
Image patch number

Figure 2 | Naturalistic motion stimuli. (a) Speed of retinal image motion in a natural scene for an observer walking briskly to the left at 3.0 mph while
fixating the marked point on the ground. A static range image was captured via laser time-of-flight. Distances to the objects in the scene range from 7 to
150 m. Four randomly selected image patches were the starting frame for each of the four movies (solid squares, the starting frame for each movie).
(b) Movie image sequences and motion cubes from the image patches in a. Motion cubes show a three-dimensional (3D) space-time (I, ;) representation
of movie. Different speeds (and different motion directions) correspond to different orientations in space-time (top surface of each cube). (¢) Stimulus
generation for computational analysis and behavioural experiment. Movies were vertically averaged and windowed to create a 2D space-time (I, ;)
‘component-motion” movie. Ideal and human observers were presented 2D movies. Vertically oriented space-time receptive fields, like those within an
cortical orientation column, give identical responses (p =0.989; y=1.01x — 0.02) to 2D and 3D movies. (d) Random samples from a large set of
naturalistic space-time image movies that span a range of speeds (— 8 to 8 deg/s). Variation within rows is due to textural variation in the movie
('nuisance stimulus variation’). Variation across the rows is due to variation in speed.
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maximization analysis (AMA)?6. AMA finds the linear RFs that
on average across stimuli extract the information most useful for
estimating the stimulus property of interest (in the present case,
motion speed). For any fixed number of RFs and a given training
set of stimuli, AMA returns the set of RFs that support maximal
accuracy in the specific task (see Methods; code available: http://
burgelab.psych.upenn.edu).

Before applying AMA, we make the information available to
the ideal observer comparable to that available in human visual
system. Specifically, we incorporate the eye’s optics, and the
wavelength sensitivity, spatial sampling and temporal impulse-
response function of the photoreceptors?”?8, together with
luminance normalization (light adaptation) so that the
responses are a spatiotemporal contrast signal c. We also add a
small baseline amount of white spatiotemporal Gaussian noise n
to the photoreceptor responses. This noise must be included to
prevent AMA from learning to use information that is so weak as
to be undetectable to the human visual system. We pick the level
of noise ¢ to be consistent with the maximum human contrast
sensitivity, although the specific value has relatively little effect on
the results. Finally, we scale the noisy input signals to a vector
magnitude of 1.0. This operation is consistent with the contrast
normalization (contrast gain control) seen in the early visual
system!%2%30 (Supplementary Note 1). Thus, this is also an
appropriate biological constraint.

Given the above constraints, the response of an arbitrary linear
RF is given by

R— f-(c+mn) (1)
le+n]?

where f is a vector of the spatiotemporal pattern of weights (the
RF), ¢ is the input spatiotemporal contrast signal (vector),
n~N(0,62I) is a vector of iid. Gaussian noise with s.d. o,
and ||c+n|| is the L2 norm (magnitude) of the noisy contrast
vector. AMA finds the RF population f= (fy,---.f,) of size q that
maximizes estimation accuracy. (Interestingly, the expectation of
equation (1) closely approximates the standard equation in the
literature for mean neural response as a function of image
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The specific population of eight spatiotemporal RFs that
optimally encodes information for speed estimation is shown in
Fig. 3a (Supplementary Fig. 2). Increasing the number of RFs
beyond eight provides relatively little additional information.
Some of these RFs are selective for the sign of motion direction
(like many V1 simple cells, they are oriented in space time).
Perhaps more surprisingly, some of the RFs are not selective for
the sign of motion direction (also like some V1 simple cells).
None are strongly selective for speed.

To illustrate their lack of speed-selectivity, the speed-tuning
curves of each RF are plotted in Fig. 3b. Each tuning curve was
obtained by computing the mean of the squared response across
all natural movies at each speed in the training set (similar results
are obtained from half-squaring). Response variability is large
compared with the change in mean response. This response
variability is not due to intrinsic neural noise (which is set to zero
for this plot). Rather, it is due to task-irrelevant variation in the
natural signals. That is, the space-time RFs are not response
invariant to stimulus dimensions other than speed. Units with
these space-time RFs individually provide poor information about
speed in natural viewing. The same is presumably true for their
neurophysiological analogues. The lack of speed-selectivity, and
the lack of invariance to nuisance stimulus properties, occurs
because (i) natural image movies contain a range of spatial
frequencies, (ii) each space-time RF is sensitive only to a narrow
band of frequencies, and (iii) the responses of each RF are
significantly modulated both by spatial-frequency content and by
speed. Although each individual unit provides relatively poor
information about speed, as a population, the RFs optimally
extract the information in the movies for speed estimation.

Selectivity for speed and invariance for ‘nuisance’ stimulus
properties can be achieved by combining the responses from the
population of RFs. To determine how to optimally combine
responses, we examine the population response to a large training
set of natural image movies, conditioned on each speed. Figure 3¢
shows the conditional response distributions of RFs f; and f, to
thousands of movies in the training set, colour-coded by speed.

see  Supplementary Note 1, Supplementary
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Figure 3 | Optimal space-time receptive fields for speed estimation with naturalistic image movies. (a) Space-time receptive fields (RFs) that extract
the most useful retinal image information for estimating speed. (b) Speed-tuning curves of the RFs in a. They are direction selective, but are not speed-
tuned and they do not exhibit invariance. The grey area indicates response variability ( £1s.d.) due to irrelevant image features in natural images, not neural
noise. (¢) Conditional response distributions, p(R | s,), from the first two receptive fields. Different colours and symbols indicate different speeds. The
information about speed is primarily contained in the covariance of the joint RF responses. As speed increases from zero, the distributions overlap more,
suggesting that speed discrimination thresholds will increase with speed, similar to Weber's law for speed discrimination.
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Each symbol is the joint response to one movie. Clearly, responses
cluster as a function of speed. The covariance of the conditional
responses (Fig. 3c) carries almost all the information about speed.
The mean responses carry little information; the means are all
centered near 0.0. Thus, the joint (for example, pairs of) RF
responses carry nearly all the information about speed, while the
responses of individual RFs carry very little.

The population responses evoked by natural stimuli specify the
optimal (non-linear) combination rules. In the present case
(speed estimation), the joint conditional response distributions
(the distribution of population responses conditioned on speed)
are approximately Gaussian:

P(R[s) = gauss[R; u(s), C(s)] (2)

where R is the vector of eight linear RF responses given speed s.
The vector of mean responses u(s) and the covariance matrix of
responses C(s) are both functions of the speed. Given that the
conditional response distributions are Gaussian, the distributions
for each speed sy are fully specified by the mean and covariance of
the RF responses (equation (2)). Note that the conditional
response distributions are Gaussian in part because of contrast
normalization?!3!; without normalization the distributions tend
to be more kurtotic than Gaussian distributions?!»31-32,

The goal of the ideal observer is to pick the most probable
speed given the observed population response; that is, the speed
for which p(s|R) is greatest. This is the so-called maximum a
posteriori decision rule. Applying Bayes’ rule shows that the
maximum a posteriori rule is equivalent to picking the speed
for which p(R|s)p(s) is greatest (Fig. 1), where p(R|s) is the
likelihood (L) (equation (2)), and p(s) is the prior probability
distribution over speed. (Note that p(R|s) is the conditional
response distribution when it is regarded as a function of R
(equation (2)), and it is the likelihood function when regarded as
a function of s). In the present experiment, the training and test
movie sets had equal numbers of movies at each speed, and the
human observers in the subsequent experiment (see below) knew
that the speeds occur with equal probability. Hence, we assume a
uniform prior. In this case, the ideal is to pick the speed for which
the response vector has the greatest likelihood. Thus, the ideal
observer is completely specified once the conditional response
distributions are determined.

How might the optimal computations be implemented in
neural circuits? The response distributions are approximately
Gaussian (Fig. 3c); hence, the exponent of each Gaussian is a
quadratic function of the RF responses. Therefore, a neural circuit
that computes a weighted sum of squared RF responses and then
passes the sum through an accelerating nonlinearity (Fig. 3a)
could create a unit with responses that are proportional to the
likelihood of the joint RF response (Fig. 2¢) for a particular speed:
RY = p(R(s)|sx) Appropriate construction of each of these L
neurons depends crucially on determining the appropriate
weights. The specific set of weights for each L neuron (which
each has its own preferred speed) is specified by the covariance
matrix C(s;) for that speed2 (see equation (2), Supplementary
Note 2). Weighted summation and squaring are common
operations in cortex. The final accelerating nonlinearity could be
approximated by the non-linear relationship between membrane
potential and spike rate. Thus, in principle, a population of speed-
tuned neurons, in which each neuron has its own preferred speed
sk could be implemented with common neural computations.

The responses of many neurons in cortex are well-character-
ized by response models having multiple non-linear subunits (for
example, linear RFs followed by a squaring nonlinearity) whose
outputs are then combined linearly and passed through a final
accelerating output nonlinearity*>~3>, Our analysis provides a
normative prescription for determining the subunit RF structure,

nonlinearities and weights that speed-selective neurons should
have. Our approach thus has the potential to link methods for
systems identification with normative principles for the design of
circuits subserving particular tasks.

Speed-tuning curves for a population of L neurons spanning
the whole range of speeds are shown in Fig. 4b. All tuning
curves are unimodal, relatively invariant to the variable spatial
structure of natural signals (Fig. 2d), and well-approximated by a
log-Gaussian shape (except near zero). The bandwidth of speed-
tuning curves increases with the absolute value of the neuron’s
preferred speed and decreases with increasing numbers of
contributing space-time RFs (that is, subunits; Fig. 4c).

To determine the optimal speed estimate for a given movie
from a population of speed-selective L neurons, we compute the
response of each L neuron to the movie, interpolate the
distribution of responses and read off the peak. The location of
the peak is the optimal speed estimate. This decision rule is
equivalent to reading off the peak of the posterior probability
distribution under the assumption of a flat prior (that is, finding
the max of equation (2) across speed). There already exist
plausible neural computations for reading off the peak response
of a neural population®°.

Speed estimation accuracy from a large collection of test
natural movies (61,000 test patches: 1,000 natural inputs X 61
speeds) is shown in Fig. 5a. (None of the test patches were in the
training set, and only one-third of the test speeds were in the
training set). Speed estimates are unbiased over a wide range and
error bars are quite small.

The ideal observer for speed estimation with natural stimuli
has a pattern of speed discrimination thresholds (Fig. 5b) that is
similar to the pattern characteristic of human performance with
simple laboratory stimuli'®2>3738, For both humans and ideal, as
retinal speed increases the Weber fraction for speed
discrimination decreases rapidly to an approximately constant
value (generalized Weber’s law).

Comparison of human and ideal speed discrimination. The
similarity between ideal observer performance (with natural
stimuli) and human performance (with artificial stimuli) raises
the following question: To what extent does ideal observer per-
formance predict human performance with natural stimuli?
To make the comparison precise, we measured human speed
discrimination performance with a large random sample of the
stimuli (7,000 movies per human observer) that were used to
evaluate the ideal observer.

Speed discrimination psychometric functions were measured in
a two-interval, two-alternative forced choice experiment (Fig. 6a).
In each block of trials, the speed of one of the 256-ms movies was
fixed (the standard), while the other movie (the comparison) had
one of seven possible speeds. The spatiotemporal structure of
both movies on every trial was always different; that is,
throughout the entire experiment, the observer never saw the
same movie twice (see Methods for details).

The psychometric functions of one human observer, measured
at five standard speeds, are shown in Fig. 6b. The function slopes
become shallower as the standard speed increases, indicating that
speed discrimination becomes more difficult as speed increases.
Thresholds for all three observers are similar at all standard
speeds (symbols in Fig. 6c). Threshold is defined to be the
difference between standard and comparison speeds that
produces responses at 75% correct (d' = 1.36). Human thresholds
closely parallel those of the ideal (Fig. 6¢, solid curve), although
the humans are somewhat less sensitive (by a scale factor of
0.50-0.64). Both human and ideal thresholds increase exponen-
tially with speed (that is, straight line on log-linear plot, which is
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preferred speed, is obtained by appropriate weighted combination of the squared responses of the receptive fields (Fig. 3a). The weights are specified by
the receptive field response distributions, conditioned on each speed (see Fig. 3c, Supplementary Note 2)). The speed-tuning curve of each likelihood
neuron is much more selective for speed than the space-time receptive fields. (b) Likelihood neurons exhibit log-Gaussian speed-tuning curves, and are
largely invariant to irrelevant features in the retinal images (grey area). Speed-tuning curve widths (speed bandwidths) increase systematically with
preferred speed. These tuning curves are not cartoons. Rather, they are constructed directly from receptive field responses (see Fig. 3) to natural movies.
(c) Preferred speed versus speed bandwidth increases with preferred speed. Tuning curve widths decrease systematically with an increase in the number of
receptive fields (subunits) that are combined to produce the L neuron responses.
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close to the generalized Weber’s law over this range of speeds—
see Fig. 5b). This psychophysical law of speed discrimination has
been observed repeatedly with artificial stimuli?>?7-*8. The
present result shows (i) that the law holds with naturalistic
stimuli and (ii) that the law follows from first principles (that is, a
Bayesian ideal analysis of natural signals).

Threshold measures of performance provide a useful summary
of performance across multiple conditions, but they reduce each
psychometric function to a single number. The raw psychometric
data itself can be used to make richer, more detailed comparisons
of human and ideal observers. First, we determine the proportion
of times the ideal would choose the comparison stimulus
(Fig. 7a). Next, for the both the human and ideal observers we

6 NATURE CC

convert proportion comparison chosen to signal-to-noise ratio
(d') using the standard formula d = 2® ~ }(PC), where PC is the
percent comparison chosen®®. (Negative d’ values correspond to
conditions in which the observer chooses the comparison as faster
less than 50% of the time. Discriminability increases with the
magnitude of d, independent of the sign.) Human sensitivity is
highly correlated with ideal sensitivity across all standard and
comparison speeds (Fig. 7b). Indeed, a single free parameter
(that is, the slope of the best fit line in Fig. 7b) captures >95% of
the variance in the data for each observer. This correspondence is
remarkable given that the ideal observer, though constrained
by front-end properties of the human visual system, was
not designed to match human performance. The efficiency*’
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Figure 7 | Human and ideal observer speed discrimination performance. (a) Estimate histograms (c.f, Fig. 5a) from the ideal observer as a function of
comparison speed. Ideal observer performance can be calculated directly from the estimate histograms by placing a criterion that will maximize percent
correct. (b) Correlation of human and ideal observer performance for three human observers. Raw psychometric data (for example, Fig. 6b) was converted
to sensitivity (d') via the standard equation from signal detection theory: PC =®(d'/2). The efficiency n of each human observer corresponds to the
squared slope of the best-fit line. (¢) Human speed discrimination data with naturalistic image movies (symbols). The degraded ideal observer (coloured
lines) accounts for each human's data across all conditions with a single free parameter.

N = d? /@3 of each human observer, corresponds to the
squared slope of the best-fitting line in each panel of Fig. 7b.
Thus, a one-parameter model of human speed discrimination can
be constructed by degrading the ideal observer to match human
performance by some fixed computational inefficiency.

The predictions of the degraded ideal observer are shown in
Fig. 7c. Fits were obtained by degrading ideal performance
across all conditions by the efficiency of each observer:
PCegraded = d)(\/ﬁ et/ 2). The detailed patterns in each
human’s raw psychometric data are nicely predicted with a
single free parameter.

An analysis of trials in which standard and comparison speeds
are identical shows that the degraded ideal predicts its own trial-
by-trial responses at above chance (~58%). This performance is
rather low, but it is as expected given the efficiency, assuming it is
due to internal noise. Human trial-by-trial responses predict
degraded ideal responses (with standard and comparison
identical) less well, but still significantly better than chance
(~53%).

To further test the generality of the ideal observer and its
predictions, we presented the ideal and human observers with
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classic artificial stimuli: drifting 2 c.p.d. sinewaves. With these
sinewave stimuli, ideal (and degraded ideal) speed discrimination
thresholds decrease by ~30%. Human speed discrimination
thresholds decrease by almost exactly the same amount (Fig. 8a).
This result makes sense. Sinewave stimuli introduce less external
variability than natural stimuli; hence, the lower thresholds. The
degraded ideal observer, PCiegraded = (I)(\/ﬁdi’deal / 2), also
accounts well for the detailed psychometric data. The symbols
in Fig. 8b are the human data, and the solid curves are the
predictions of the degraded ideal. The efficiency parameter for the
degraded ideal was determined from the psychometric data with
natural stimuli (Fig. 7b,c). The predictions in Fig. 8b were
therefore obtained with zero free parameters.

Discussion

An ideal observer for component-speed estimation was derived
from an analysis of naturalistic image movies, given the
constraints of the early visual system (optics, receptors, noise).
We  described the ideal computations, and showed
how basic neural operations (for example, linear filtering,
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Figure 8 | Human and ideal observer speed discrimination performance improves similarly when probed with drifting sinewaves. (a) Thresholds for
discriminating speed with 2 c.p.d. sinewave stimuli (grey) versus natural stimuli (black). Human thresholds (symbols) and ideal thresholds (solid curves)
decrease by approximately the same proportion (0.7 versus 0.63). Degrading ideal performance with both stimulus types by the same amount (arrows)
produces a good fit of human performance (dashed curves). (b) The human psychometric data with sinewave stimuli (symbols) is predicted by the degraded
ideal observer (solid curves). The efficiency parameter for the degraded ideal was obtained from the human data with natural stimuli (values of the efficiency
parameter are given in Fig. 7b). The 30% decrease in human threshold with sinewave stimuli is quantitatively predicted with zero free parameters.

exponentiation, normalization) could produce neural populations
that exhibit selectivity to speed and invariance to nuissance
stimulus properties.

Then, we measured human and ideal performance in a speed
discrimination task with the same set of natural image movies.
Human discrimination thresholds paralleled but were somewhat
higher than ideal thresholds across the range of tested speeds.
More remarkably, the detailed shapes of the human psychometric
functions were predicted by degrading the ideal observer’s
performance with a single free parameter (efficiency) across all
conditions. After estimating human efficiency with the natural
image movies, we tested human performance with drifting
sinewaves. The degraded ideal predicts a substantial improvement
in human thresholds (30%) with zero additional free parameters.
The human data quantitatively conforms to these predictions.

Unlike other models of speed discrimination, the ideal observer
was not constructed to match known facts about human speed
discrimination performance. Rather, the behavioural predictions
follow from a principled Bayesian analysis of naturalistic movies,
given the constraints imposed by the visual system’s front end.
(We emphasize that the predictions depend on both the statistical
structure of the stimuli and the front-end properties included in
the analysis). Thus, desp1te some valid concerns that have been
expressed in the literature3?, our results suggest that the variation
in natural signals can be used both to build principled models of
visual computations and to effectively probe performance.
Indeed, we find that some well-established properties of
neurons involved in speed estimation and a fundamental law of
speed discrimination performance (exponential law or
approximate generalized Weber’s law) follow directly from
optimal computations on naturalistic movies.

Similar computations were recently found to be optunal for
binocular disparity estimation with natural signals?!. Disparity
and motion estimation are fundamentally dlfferent tasks
in early- and mid-level vision, each with its own extensive
neurophysiological and psychophysical literatures. The success of
the same approach in these two distinct domains of visual
neuroscience may constitute an important scientific result in its
own right. Specifically, it suggests the possibility that the
computations in Fig. 4a together with near-optimal task-
relevant linear RFs, may be a class of functional neural
computation that the brain uses in other visual tasks and in
other sensor?f modalities (a form of ‘canonical’ neural
computation*

It has long been recognized that a goal of perceptual processing
may be to transform sensory signals into a representation where
specific dimensions of information are made more explicit*2. For

8

example, neurons in primary V1 make more explicit the
orientation information implicitly contained in the retinal
outputs. In the context of object recognition, a version of this
hypothesis is the ‘untangling’ hypothesis, which states that as
visual processing proceeds, the neural representation of a variable
of interest is transformed from ;2 non- linearly separable to a
linearly separable representation?. The present approach would
seem to constitute a quantitative example of such an ‘untangling’
process—it specifies the optimal rules for taking the ‘tangled’
(linearly inseparable) representation of speed in the simple-cell-
like RFs (Fig. 3c) and transforming it into an ‘untangled’ (linearly
separable) representation of speed in the speed-tuned neurons
(Fig. 4). In other words, the population of speed-tuned neurons
explicitly represents speed.

Comparison with V1 and MT neurons. The first-level linear
units that are somewhat direction- and not speed-selective (Fig. 3,
Supplementary Fig. 3) and the second-level units that are both
direction- and speed-selective (Fig. 4) were derived from natural
image movies, given the task of component-speed estimation.
Thus, it is interesting to ask how the properties of these units
compare with those of individual neurons in V1 and MT.

Simple and complex cells in V1 vary greatl?l in their selectivity
to the sign of component-motion direction>'®44, A study using
antidromic stimulation showed that the subsets of V1 complex
cells projecting to MT are component cells that are highly
selective to the sign of motion direction!8, Interestingly, this study
showed that the distribution of the direction-selectivity index in
this sub-population of V1 neurons is essentially the same as
those of MT neurons, implying that MT neurons inherit their
direction-selectivity from V1.

This result suggests a potential parallel between processing in V1
and the ideal observer for component speed estimation. The poor
speed tuning of first-level units (Fig. 3a, Supplementary Fi ig. 4) is
similar to that of the general population of V1 simple cells'%. Also,
the distribution of direction-selectivity for the first-level units
(Supplementary Fig. 5a) is similar to that of the general population
of simple and complex cells, and the distribution for the second-
level speed-selective units (Supplementary Fi: 1g 5b) is similar to that
of V1 complex cells projecting to MT'™®. Therefore, speed-
selectivity in MT (like direction-selectivity) may be inherited
from a specialized subset of neurons in V1.

The broad distribution of direction-selectivity in the first-level
units follows from an analysis of natural image movies based on
maximizing accuracy in a speed estimation task. An analysis
based on maximizing sparseness and completeness (efficient
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coding) yields linear space-time RFs!>1® that appear to be much

less varied in their direction-selectivity (more direction selective
on average) than those reported here. Thus, arbitrary subsets of
these sparse-coding populations will be less optimal for speed
estimation. Of course, accurate estimates of speed could, in
principle, be obtained from any complete representation (just as
the retina contains all available information for speed estimation).
Therefore, it is possible that a small subset of these sparse
populations are similar to the specific RFs identified here. If that
turns out to be the case, then our results could also be described
as identifying the best subset to pool for obtaining speed-selective
neurons.

Many neurons in MT are speed tuned, have tuning curves that
are approximately log-Gaussian over speed and have bandwidths
that increase systematically with preferred speed!44>46, These
properties are consistent with the optimal second-level units
(Fig. 4, although the second-level units have narrower bandwidths
than neurons in MT). It has been argued that these properties are
consistent with the psychophysical finding of Weber’s law for
speed discrimination®®. Our analysis shows further that these
properties and the resulting Weber’s law (see Fig. 5) are
consistent with optimal processing of natural signals, and hence
are predicted from first principles.

Alternative implementations of ideal computations. In the
results section, we describe one way of implementing the ideal
computations (see Fig. 4a). Although that implementation is
relatively simple, the implementation of the L neurons is not
biologically plausible, because strictly linear neurons do not exist
in the visual system (for example, there are no spike rates below
zero). However, in the Supplementary Material we describe a
more biologically plausible implementation of the L neurons that
is in the spirit of the classic model for obtaining complex cells;
namely, by summing the responses of simple cells?.

Of course, there is no mathematical requirement that the
likelihood of the joint RF responses be explicitly represented in a
second population of L neurons, but available neurophysiology
seems consistent with this story. Neurons in a number of

Movie number

-8 —4 0 4
Speed (deg/s)

well-documented brain areas (for example, areas V1 and MT)
seem to represent variables explicitly that are represented only
implicitly in earlier areas. As signals proceed through the visual
system, neural states become more selective for properties of the
environment, and more invariant to irrelevant features of the
retinal images.

General implications of the variability of natural signals.
Natural signals are highly variable. Hence, to determine the
optimal computations for natural signals or to evaluate how well
an organism is processing natural signals, it is important to
analyse large numbers of stimuli. Figure 9 helps make this point.
The space-time plots within each coloured rectangle in Fig. 9a
represent the set of retinal image movies that would be produced
by translating past the same point in a scene at different speeds
(c.f., Fig. 2a). Each different coloured curve in Fig. 9b shows the
corresponding joint response of the two RFs for each set of
movies at different speeds.

There is great variation in the locus of joint responses
produced by different natural stimuli, as a function of speed. It
is obvious from these plots that attempts to determine the optimal
computations from a small number of natural movies are likely to
be frustrated, and conclusions about the optimal computations
are likely to be mistaken (c.f, Fig. 2¢). Yet, much psychophysical
and neurophysiological research focuses on characterizing
responses to small sets of artificial stimuli where each stimulus
is presented many hundreds of times.

Analysing a large representative set of naturalistic stimuli can
complement more traditional experimental designs and provide a
better picture of the processing required under natural conditions.
In natural conditions, the exact same stimulus is rarely if ever seen
twice. Thus, the variation and uncertainty in natural stimuli can be
assets rather than hindrances for discovering the computations
that optimize performance in critical sensory-perceptual tasks.

Generality of findings and next steps. A number of different
factors underlie the optimal RFs and estimation performance

b

\ —— Mov326
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%
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Mov409
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F2 response
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Figure 9 | Natural stimulus variability. (a) Different movies in the test set. Rows show movies that all shared the same first frame (c.f,, Fig. 2a). Each row
therefore represents the set of retinal image movies that would be produced by translating past the same point in a scene at different speeds. Columns
show different speeds ranging between — 8 and 8 deg/s. The variation across rows represents the fact that variable spatial-temporal frequency content
and contrast is an irreducible form of stimulus variability in natural viewing, even when speed is the same. (b) Expected responses of the first two receptive
fields (Fig. 3a) to movies sharing the same first frame across the full range of speeds (colour-code same as in a). Responses do not segregate by the
starting frame of each movie (‘image identity’) nearly as well as they segregate by speed (c.f, Fig. 3c). The termination points of each curve indicate the
responses to the fastest leftward ( — 8 deg/s, arrows) and rightward speeds (+ 8 deg/s) of each row in a. Speed changes with position along the curve.
Large circles indicate responses at zero speed. Small circles show noisy joint responses to movie set 578. Noise magnitude in this response space reflects
the combined effects of contrast normalization and noise added to equal the minimum equivalent noise in humans (see Results, equation (1), Fig. 4a). As
contrast decreases (faster rightward speeds for movie 578), effective noise magnitude increases.
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described here. First, the ideal observer analysis was applied to
noisy photoreceptor responses that were computed using the
optics of the human eye and the spatial density and temporal
impulse-response function of human/primate photoreceptors
reported in the literature. These factors have a substantial effect,
because they filter out high spatial and temporal frequencies, but
they must be modelled because they are essentially known factors
that prevent information from reaching retinal and cortical cir-
cuits. Thus, to understand information processing in real systems,
these factors are appropriate and essential to include.

Second, we included contrast gain control, a ubiquitous property
of early visual processing!®?>*? (see Supplementary Note 1). This
factor has little effect on the optimal RFs, because the normalization
has no effect on the spatiotemporal shape of the signals.

Third, we analysed natural image movies that were created by
texture-mapping image patches onto surfaces, and then translating
the surfaces behind small apertures. Analysis was performed for
both frontoparallel surfaces (rigid motion) and slanted surfaces
(non-rigid motion). Differences in performance were slight
although there were some differences in the optimal RFs
(Supplementary Fig. 2). A limitation of our stimulus set was that
it did not include the effects of occlusions and depth disconti-
nuities (discontinuous motion). Spatially varying motion signals
that vary across the retina may help define the spatiotemporal
integration window (pooling area) that maximizes the accuracy of
motion estimation®2. A productive direction for future work would
be to analyse co-registered range and camera images of real scenes
captured during translation along known paths.

How important is the phase structure of natural image movies?
We addressed this question by texture-mapping Gaussian noise
with the amplitude spectrum of natural images (1/f noise) onto
surfaces. Again, there are modest differences in performance and
RFs. Training on drifting sinewaves and testing with natural
movies result in more substantial differences. These results
dovetail with previous results obtained for an ideal observer of
disparity estimation in natural stereo-images®!, and suggest that
the ideal observer derived here for local speed estimates is
relatively, but not completely, robust to modest changes in the
stimulus properties.

The focus of this study was the estimation of component speed.
A logical next step would be to consider how component-speed
units (L neurons) for different orientations should be combined
to obtain units that are tuned for specific motion vectors (speed
and angular direction), like the pattern-motion cells found in area
MT. One approach would be to sum the responses of appropriate
subsets of component-speed units based on the ‘intersection of
constraints’ rule!>1323. Another would be to take the responses of
the component-speed units to natural image movies as input and
repeat the analysis described here to obtain units optimal for
motion-vector estimation.

Conclusion

The present study used a Bayesian ideal observer analysis of
natural signals to obtain principled hypotheses for perceptual
processing in a specific natural task, and then tested the
parameter-free quantitative predictions of those hypotheses in a
behavioural experiment with stimuli derived directly from the
natural signals. In a number of other recent studies!®2147:48
‘natural systems analysis’ has provided new insights into the
neural mechanisms and computational principles that underlie
human performance in natural/naturalistic conditions. Evolution
has pushed organisms towards the optimal solutions in critical
sensory-perceptual tasks. It seems likely that this general
approach will prove useful for other sensory-perceptual systems
in a wide range of organisms.
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Methods

Psychophysical methods. Human observers. Three observers participated in

the experiments. All had normal or corrected-to-normal acuity. Two observers
were authors; the third was naive to the purpose of the experiment. The human
subjects committee at the University of Texas at Austin approved protocols for the
psychophysical experiments. Informed consent was obtained.

Stimuli. Stimuli were presented on a Dell P992 19inch cathode ray tube monitor
with 1,600 % 1,200 pixel resolution, and a refresh rate of 62.5 Hz. The display was
linearized over 8 bits of grey level. The maximum luminance was 116.0 cd/m?; the
mean background grey level was set to 58.0 cd/m2. The observer’s head was
stabilized with a chin- and forehead-rest, positioned 93 ¢m from the display
monitor. Each stimulus movie subtended a visual angle of 1.0 deg (76 x 76 monitor
pixels). Movie duration was 256 ms (16 frames at 62.5 Hz). All stimuli were
windowed with a raised-cosine in space and a flattop-raised-cosine in time. The
transition regions at the beginning and end of the time window each consisted of
six frames (96 ms); the flattop of the window in time consisted of four frames
(64 ms). Stimuli for the ideal observer were windowed identically. To prevent
aliasing, stimuli were low pass filtered in space and in time before presentation
(Gaussian with o,=4c.p.d., g,=31.25 Hz)*°. No aliasing was visible. Sinewave
stimuli were phase randomized on every trial, and were windowed and
preprocessed identical to the natural stimuli.

All stimuli were set to have the same mean luminance as the background
(58.0cdm ~2) and a r.m.s. contrast of 0.141 (equivalent to 0.20 Michelson contrast
with sinewave stimuli). The r.m.s. contrast is given by

Cems. = (Z c2> / (Z w) 3)

where ¢, is the Weber contrast at each space-time pixel of the windowed stimulus,
Wy is the space-time window and 7 is the dimensionality of the stimulus contrast
vector. Stimuli were contrast-equalized because low contrast can have a strong
effect on speed percepts?>?>>?, By equalizing the on-screen contrast of the stimuli,
we eliminated the possibility that contrast differences (between different movies
having the same speed) are responsible for variation in human performance. Thus,
our analysis predicts variation in speed estimation (that is, underestimation and
overestimation) for movies having exactly the same speed and overall contrast.
This variation is due to changes in the spatial-frequency content alone.
Dependencies on contrast will be explored in future work.

Procedure. Data was collected using a two-interval forced choice procedure. The
task was to select the interval with the movie having the faster speed via a key press;
the key press also initiated the next trial. Feedback was given. A high tone indicated
a correct response; a low tone indicated an incorrect response. On each trial, one
‘standard speed” and one ‘comparison speed’ movie were presented in pseudo-
random order. Movies always drifted in the same direction within a trial.
Experimental sessions were blocked by absolute standard speed. An equal number
of movies drifting to the left and right were presented in the same block to reduce
the potential effects of adaptation. For example, in the same block, data was
collected at standard speeds of —5.20 and + 5.20 deg/s.

Psychometric functions were measured for each of 10 standard speeds ( % 5.20,
+4.16, £3.12, £2.08, *1.04deg/s) using the method of constant stimuli, seven
comparison speeds per function. For each standard, each of the seven comparison
speeds was presented 50 times. Each observer completed 3,500 trials (2
directions x 5 standard speeds x 7 comparison speeds x 50 trials).

The exact same naturalistic movie was never presented twice. Rather, movies
were randomly sampled without replacement from the test set of 1,000 naturalistic
movies at each speed (described in the main text). This sampling procedure was
used to ensure that the set of stimuli used in the psychophysical experiment had
approximately the same statistical variation as the stimuli that were used to train
and test the ideal observer model. Specifically, for each standard speed, 350
‘standard speed movies’ were randomly selected. Similarly, for each of the seven
comparison speeds corresponding to that standard, 50 ‘comparison speed movies’
were randomly selected. Standard and comparison speed movies were then
randomly paired together.

This feature of our experimental design represents a departure from methods
used in classical psychophysical studies in which the same stimulus is presented
many hundreds of times. Such studies have typically focused on the performance
limits imposed by internal noise. In contrast, the aim of our study was to examine
the performance limits imposed by variation and uncertainty in natural stimuli.

Data analysis. To compare performance, human and ideal observers were
presented with the same randomly sampled, contrast-equalized stimuli. The ideal
observer decision criterion was identical to the criterion the human observers were
assumed to follow. Specifically,

argmax p(s|Ry)

> 1 choose Interval 1;if —=

argmaxp(s|Ry)
1fargmaxp(s\Rz) - argmaxp(s|Ry)

<1 choose Interval 2 (4)

where R; and R, are the population responses of the space-time RFs (Fig. 3a) to the
movies presented in the first and second intervals, respectively.

To obtain speed discrimination thresholds, the raw psychometric data was fit
with a cumulative Gaussian function using maximum likelihood estimation.
Threshold criterion was set to d’ = 1.36, the speed difference required to go from 50
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to 75% on the psychometric function. Confidence intervals on the thresholds were
calculated from 1,000 bootstrapped data sets. The psychometric data was similar
for the two different directions of motion (left or right); data were collapsed across
the direction of motion, and re-fit with the Gaussian. Thus, each symbol in Figs 5b
and 6b,c is comprised of 100 measurements per absolute comparison speed, for a
total of 700 measurements per psychometric function.
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Supplementary Figure S1. Accuracy of contrast normalization approximation. A Accuracy of the approximation
across all stimuli. Each circular symbol represents a different stimulus. The Approximation Mean (mean response
given by Eq. S2) is plotted True Mean (sample mean response of Eq. S1; 10,000 samples). B The difference between
the True Mean and the Approximation Mean. The average bias across stimuli is zero, meaning that the approximation
is unbiased. Note the small scale of the y-axis. Additionally, root-mean-squared bias decreases asymptotically to zero
with a power law, suggesting that residual bias is due to sampling error in the Monte Carlo simulation. Thus,
approximation is accurate across the stimulus set. C Accuracy of the approximation for an individual stimulus.
Response of a model simple cell to the stimulus in the training set that evokes the largest response from space-time

receptive field f,, for original (100%) and artificially decreased (< %2100) contrasts, for different values of Cy- The

curves show the Approximation Mean (mean response given by Eq. S3 with output nonlinearity p = 2.0). The circular
symbols show the True Mean (sample mean response of Eq. S1 with output nonlinearity p = 2.0; 10000 samples).
Shaded areas show +/-1SD of noisy sample responses. The same result holds for all receptive fields and stimuli. The
approximation is thus accurate for individual stimuli.
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Supplementary Figure S2. The influence of training on movies with rigid motion only on optimal receptive fields for
speed estimation. A. Optimal space-time receptive fields for speed estimation with only rigid retinal image motion. Just
as in the main text, a training set was created by texture-mapping randomly sampled patches from photographs of
natural scenes onto surfaces. The surfaces were then drifted behind an aperture. This training set included movies only
of frontoparallel surfaces (rigid-motion only), whereas the set in the main text did not contained movies of surfaces
slanted to varying degrees (non-rigid motion). The similarity between these receptive fields and those in the main text
provides evidence that the results in the main text are largely robust. However, note that there exist some differences
between these receptive fields and those presented in the main text. For example, receptive fields 6-8 appear more like
discrete cosine transfer components than the receptive fields in cortex. B. Quantifying the similarity between individual
receptive fields. Correlation between space-time receptive fields in main text (rigid motion), and the movies in A (non-
rigid motion). The optimal space-time receptive fields are largely but not completely robust to whether the image set
contains non-rigid and rigid vs rigid motion only.
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Supplementary Figure S3. Optimal space-time receptive fields and their pair-wise combinations. The original eight
receptive fields are shown on the diagonal. The optimal computations could be implemented by appropriately
weighting the squared responses of the receptive fields and their pair-wise combinations. This eclectic mix of receptive
fields could be used in one of several possible implementations of the optimal computations (see Discussion,
Supplement Note 3). Each receptive field response would get a different weight depending on the preferred speed of
the likelihood neuron to which it contributes (equations S4,S5). Therefore, the variety of space-time receptive fields in
cortex may play a functional role in speed estimation.
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Supplementary Figure S4. The speed tuning curves of each optimal space-time receptive fields and their pair-wise

combinations. The tuning curves of the original eight receptive fields are shown on the diagonal.
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Supplementary Figure S5. Direction selectivity in first- and second-level units. A. Distribution of the direction
selectivity indices for the first level units in the most biologically plausible implementation of the ideal observer for
speed estimation (see Discussion, Supplementary Note 3, Supplementary Fig. S3, Supplementary Fig. S4). B.
Distribution of the direction selective index for second level units (L neurons, see Fig. 4).



SUPPLEMENTARY NOTE 1

Contrast normalization

In the main text, we claim that the standard equation for contrast normalization in the literature
provides a good approximation for the expected value of receptive field responses to encoded
images that have been corrupted by noise. Here, we present Monte Carlo simulation results to
support the claim. We examine the accuracy of the approximation for an individual image movie,
and across the entire set of movies. Eg. (1) in the main text (repeated here) gives the response of a
linear space-time receptive field to a noisy, contrast-normalized stimulus

(c+n)

R=f. (S1)

e nff

where m ~ N(0,0'zl) is i.1.d Gaussian noise with standard deviation ¢ . That is, equation S1 gives

the response of a linear receptive field (with normalization).

Most simple cells incorporate two more nonlinearities: half-wave rectification (simple cells
cannot produce negative responses) and a squaring nonlinearity. Together, these three
nonlinearities (i.e. contrast normalization, rectification, & squaring) account for the characteristic
shape of simple-cell contrast response functions. Incorporating these features into Eq. S1, yields

2

Ror |t (c+n) (S2)

c+aff

where the half-bracket represents half-wave rectification. Thus, equation 2 gives the expected
simple cell response to a noisy input image.

The standard contrast normalization model for V1 simple cell responses™? is given by

2

__cn

o (S3)
(CéMS + Céo)

where c, is the half-saturation constant, Conss is the root-mean-squared contrast of a stimulus
(i.e., Cous = ||c||2/n ), and n is the number of pixels in the contrast patch ¢. Thus, Eq. S3 does

not explicitly include the effects of input noise.

We asked whether the expected value of the model simple cell responses to noisy input images
(Eg. S2) is a reasonable approximation to standard model responses to noiseless input images



(Eq. S3). We performed a Monte Carlo simulation to check whether E[R] (see Eqg. S2) is

approximately equal to r (see Eq. S3). Without loss of generality we can set r_, =1.0. First, we

examined the accuracy across the entire set of stimuli for the value of the standard deviation of
the contrast noise used in our experiment (& = 0.03). The results show that the approximation is
unbiased across the stimulus set (Supplementary Fig. S1A). However, accuracy across the
stimulus set does not guarantee that the approximation is accurate for individual stimuli. To
examine whether the approximation holds for individual stimuli, we selected a stimulus from the
training set that produced the largest response from space-time receptive field f;. Then we
performed a series of Monte Carlo simulations (10000 samples each), for a range of o values, as
the contrast of the stimulus was manipulated. The solid curves in Supplementary Fig. S1C plot
Eg. S3 as a function of stimulus contrast, and the circles plot the expected value of R (Eq. S2)
from the Monte Carlo simulations. For all values of o and all image movie contrast the
approximation is very accurate. The same result holds for all receptive fields and stimuli. One
implication of this result is that spatiotemporal noise in the retina could be contributing to the

half-saturation constant ¢, of cortical simple cells. If retinal noise were the only contributing

factor, the half-saturation constant of cortical simple cells would equal the standard deviation of
the noise in the photoreceptors (¢,, = o).



SUPPLEMENTARY NOTE 2

Weights for likelihood neurons
The weights for constructing the speed-tuned likelihood neurons (see Fig. 4a) are given by simple

functions of the covariance matrix. Each covariance matrix C(s,) represents the response
covariance of the receptive fields for all movies having a particular speed s,. We denote C(S.l:)

with C, for notational simplicity. The weights on the squared and sum-squared filters (see Figs.
3, S4) are given by

w, . =—diag(C,)+05C'1 (S4a)
w,,=-05C, x Vi, j>i (S4b)

where | is the identity matrix, 1 is the ‘ones’ vector, and diag() sets a matrix diagonal to a vector.

The response of the likelihood neuron with preferred speed s, is then given by

=1 j=i+l

R:ocexp[iweui‘iw”(feua)l} (55)

The proportionality can be turned into an equality by adding a constant const, to the exponent
having a value proportional to the log of the determinant of the covariance matrix C, .

A loose analogy can be made between the terms in equation S5 and the properties of neurons. The
term in the brackets can be thought of as synaptic contributions to the polarization state of the
likelihood neuron. The exponential function can be thought of as the non-linearity that converts
voltage (which can be positive or negative) to spike rate (which is always positive).



SUPPLEMENTARY NOTE 3

Alternate implementations of ideal estimator

The implementation that is schematized in Fig. 4A starts with linear receptive fields
corresponding to the AMA receptive fields, f., and all their pairwise sums, f,,. (Supplementary

+]
Figs. S3 & S4). The responses of these receptive fields, R;and R,,; are then squared, combined

via an appropriately weighted sum, and passed through an accelerating nonlinearity to obtain the
L neuron responses. An equivalent implementation is to start with the AMA receptive fields only,

f. . The responses of these receptive fields and their pairwise sums— R, and (R!+Rj),

respectively—are then squared, combined in an appropriately weighted sum (as before), and
passed through the same accelerating nonlinearity (as before) to obtain the L neuron responses.
These two ways of implementing the ideal are compact and simple conceptually, but are not
biologically plausible because linear neurons do not exist in cortex; neurons, for example, cannot
respond with a negative spike rate.

A more biologically plausible implementation of the L neurons would be in the spirit of the
classic model for obtaining complex cells; namely, by summing the responses of simple cells’.
Simple cells are typically modeled as a linear filtering stage followed by half-wave rectification
and a squaring output nonlinearity. The squared output of each optimal space-time receptive field
(and their pairwise sums) could be obtained from a pair of matched on and off units mimicking
standard V1 simple cells. The simple cell responses would then be summed with appropriate
weights and passed through an accelerating nonlinearity (as before) to obtain the L neuron
responses. In this implementation, the L neurons would be a specific type of complex cell
optimized for speed estimation. (A special case of this implementation are so-called “energy”
units, which are obtained by summing the responses of four simple cells corresponding to a pair
of receptive fields in quadrature phase®.) Complex cells for other tasks (e.g. disparity estimation)
could be obtained analogously, but would require different receptive fields and weights®. All of
the above ways of implementing the ideal estimator are mathematically equivalent. It remains
uncertain how the brain might approximately implement such ideal calculations. However, the
above arguments show that such calculations could be implemented with well-known neural
operations.
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