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A core goal of visual neuroscience is to predict human perceptual performance from natural signals. Performance in any natural task can be
limited by at least three sources of uncertainty: stimulus variability, internal noise, and suboptimal computations. Determining the relative
importance of these factors has been a focus of interest for decades but requires methods for predicting the fundamental limits imposed by
stimulus variability on sensory-perceptual precision. Most successes have been limited to simple stimuli and simple tasks. But perception
science ultimately aims to understand how vision works with natural stimuli. Successes in this domain have proven elusive. Here, we develop a
model of humans based on an image-computable (images in, estimates out) Bayesian ideal observer. Given biological constraints, the ideal
optimally uses the statistics relating local intensity patterns in moving images to speed, specifying the fundamental limits imposed by natural
stimuli. Next, we propose a theoretical link between two key decision-theoretic quantities that suggests how to experimentally disentangle the
impacts of internal noise and deterministic suboptimal computations. In several interlocking discrimination experiments with three male
observers, we confirm this link and determine the quantitative impact of each candidate performance-limiting factor. Human performance is
near-exclusively limited by natural stimulus variability and internal noise, and humans use near-optimal computations to estimate speed from
naturalistic image movies. The findings indicate that the partition of behavioral variability can be predicted from a principled analysis of natural
images and scenes. The approach should be extendable to studies of neural variability with natural signals.
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Introduction
Human beings are adept at many fundamental sensory-per-
ceptual tasks. A sufficiently difficult task, however, can reveal the
limits of human performance. A principal aim of perception sci-

ence and systems neuroscience is to determine the limits of per-
formance, and then to determine the sources of those limits.
Performance limits have been rigorously investigated with simple
tasks and stimuli (Burgess et al., 1981; Pelli, 1985; Burgess and
Colborne, 1988; Geisler, 1989; Dosher and Lu, 1998; Michel and
Geisler, 2011; Abbey and Eckstein, 2014)

Ultimately, perception science aims to achieve a rigorous un-
derstanding of how vision works in the real world. In natural
viewing, there exist at least three factors that limit performance:
natural stimulus variability, suboptimal computations, and in-
ternal noise. Testing the relative importance of these sources re-
quires two key ingredients: (1) an image-computable (images in,
estimates out) ideal observer that specifies optimal performance
in the task; and (2) experiments that can distinguish the behav-

Received Aug. 2, 2019; revised Nov. 12, 2019; accepted Nov. 17, 2019.
Author contributions: B.M.C. and J.B. designed research; B.M.C. and J.B. performed research; B.M.C. and J.B.

analyzed data; B.M.C. and J.B. wrote the first draft of the paper; B.M.C. and J.B. edited the paper; B.M.C. and J.B.
wrote the paper.

This work was supported by University of Pennsylvania startup funds to J.B.; and National Eye Institute and the
Office of Behavioral and Social Sciences Research, National Institutes of Health Grant R01-EY028571 to J.B. We thank
David Brainard for helpful discussions; and Josh Gold for providing comments on a draft version of the manuscript.

The authors declare no competing financial interests.
Correspondence should be addressed to Johannes Burge at jburge@sas.upenn.edu.
https://doi.org/10.1523/JNEUROSCI.1904-19.2019

Copyright © 2020 the authors

Significance Statement

Accurate estimation of speed is critical for determining motion in the environment, but humans cannot perform this task without
error. Different objects moving at the same speed cast different images on the eyes. This stimulus variability imposes fundamental
external limits on the human ability to estimate speed. Predicting these limits has proven difficult. Here, by analyzing natural
signals, we predict the quantitative impact of natural stimulus variability on human performance given biological constraints.
With integrated experiments, we compare its impact to well-studied performance-limiting factors internal to the visual system.
The results suggest that the deterministic computations humans perform are near optimal, and that behavioral responses to
natural stimuli can be studied with the rigor and interpretability defining work with simpler stimuli.
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ioral signatures of each factor. Here, we develop theoretical and
empirical methods that can predict and diagnose the impact of
each source in mid-level visual tasks with natural and naturalistic
stimuli. We investigate the specific task of retinal speed estima-
tion, a critical ability for estimating the motion of objects and the
self through the environment.

When a pattern of light falls on the retina, millions of photo-
receptors transmit information to the brain about the visual
scene. This information is used to build stable representations of
image and scene properties (i.e., latent variables) that are relevant
for survival and reproduction, such as motion speed, 3D posi-
tion, and object identity. The visual system successfully extracts
these critical latent variables from local areas of natural images
despite tremendous stimulus variability; infinitely many unique
retinal images (i.e., light patterns) are consistent with each value
of a given latent variable. Some image features that vary across
different natural images are particularly informative for extract-
ing the latent variable(s) of interest. These are the features that the
visual system should encode. Many other image features carry no
relevant information. These features should be ignored. (Stimu-
lus variation unrelated to the latent variable is often referred to as
“nuisance” variation.) Variation in both the relevant and irrele-
vant feature spaces can limit performance. But the impact of
stimulus variability on performance is minimized only if all rel-
evant features are encoded. Thus, stimulus variability can differ-
entially impact performance depending on the quality of feature
encoding.

Signal detection theory posits that sensory-perceptual perfor-
mance is based on the value of a decision variable (Green and
Swets, 1966). But signal detection theory does not specify how to
obtain the decision variable from the stimulus. Image-computable
observer models do (Adelson and Bergen, 1985; Simoncelli and
Heeger, 1998; Schrater et al., 2000; Ziemba et al., 2016; Schütt and
Wichmann, 2017; Fleming and Storrs, 2019). Image-computable
ideal observer models specify how to optimally encode and pro-
cess the most useful stimulus features (Burgess et al., 1981; Banks
et al., 1987; Geisler, 1989; Burge and Geisler, 2011, 2012, 2014,
2015; Sebastian et al., 2017). Image-computable ideal observer
models specify how pixels in the image should be transformed
into estimates (or categorical decisions) that optimize perfor-
mance in a particular task.

Ideal observers play an important role in the study of percep-
tual systems because they allow researchers to precisely ask, given
the information available to a particular stage of processing,
whether subsequent processing stages use that information as
well as possible (Geisler, 1989). The explicit description of opti-
mal processing provided by an image-computable ideal observer
specifies how natural stimulus variability should propagate into
the decision variable given biological constraints. Optimal pro-
cessing minimizes stimulus-driven nuisance variation in the
decision variable. Thus, stimulus variability and the optimal pro-
cessing jointly set a fundamental limit on performance.

Human performance often tracks the pattern of ideal observer
performance but rarely achieves the same absolute performance
levels. It is common to attribute these discrepancies to noise, but
discrepancies can also arise from systematically suboptimal com-
putations. To what extent does each factor contribute?

Using complementary computational and experimental tech-
niques, we answer this question for a speed discrimination task
with naturalistic stimuli. We show that (1) natural stimulus vari-
ability equally impacts human and ideal performance, (2) the
deterministic computations (encoding, pooling, decoding) per-
formed by the human visual system are very nearly optimal, and

(3) humans underperform the ideal near-exclusively because of
stochastic internal sources of variability (e.g., late noise) and not
because of a systematic misuse of the available stimulus informa-
tion. The work demonstrates that, with appropriate experimental
designs, image-computable ideal observer analysis can identify
the reasons for human perceptual limits in visual tasks with nat-
ural and naturalistic stimuli.

Materials and Methods
Experimental design and statistical analyses. Three male human observers
participated in the experiment: 2 were authors, and the third was naive to
purposes of the experiment. All had normal or corrected-to-normal acu-
ity. The research protocol was approved by the Institutional Review
Board of the University of Pennsylvania and was in accordance with the
Declaration of Helsinki. The study was not preregistered. All experiments
were performed in MATLAB 2017a using Psychtoolbox version 3.0.12
(Brainard, 1997). Psychophysical data are presented for each individual
human observer. Cumulative Gaussian fits of the psychometric functions
were in good agreement with the raw data. Bootstrapped or Monte
Carlo-simulated SEs or CIs are presented on all data points unless oth-
erwise noted. Data will be made available upon reasonable request.

Equipment. Stimuli were presented on a ViewSonic G220fb 40.2 cm �
30.3 cm cathode ray tube monitor with 1280 � 1024 pixel resolution, and
a refresh rate of 60 Hz. At the 92.5 cm viewing distance, the monitor
subtended an FOV of 24.5 � 18.6° of visual angle. The display was lin-
earized over 8 bits of gray level. The maximum luminance was 74 cd/m 2.
The mean background gray level was set to 37 cd/m 2. The observer’s head
was stabilized with a chin-and-forehead rest.

Stimuli: detection experiment. Target stimuli in the detection experi-
ment consisted of static, vertically oriented Gabor targets in cosine phase
(3 and 4.5 cpd) with 1.5 octave bandwidths embedded in vertically ori-
ented (1D) dynamic Gaussian noise that was uncorrelated in space and
time. Targets subtended 1.0° of visual angle for a duration of 250 ms (15
frames at 60 Hz). Stimuli were windowed with a raised-cosine window in
space and a flattop-raised-cosine window in time, exactly the same as the
image movies in the speed discrimination experiment. The root-mean-
squared (RMS) contrast of the target and the noise were varied indepen-
dently according to the experimental design. To minimize target
uncertainty, the target was presented to the subject, without noise every
10 trials.

For the detection experiment, a bit depth of more than 8 bits is re-
quired to accurately measure contrast detection thresholds. We achieved
a bit depth of more than 10 bits using the LOBES video switcher (Li et al.,
2003). The video switcher combines the blue channel and attenuated red
channel outputs in the graphics card. Picking the right combination of
blue and red channel outputs generates a precise grayscale luminance
signal.

Procedure: detection experiment. Stimuli in the target detection exper-
iment were presented using a two-interval forced choice (2IFC) proce-
dure. On each trial, one interval contained a target plus noise, and the
other interval contained noise only. The task was to select the interval
containing the target. Feedback was provided. Psychometric functions
were measured for each of four different RMS stimulus noise contrasts
(0.00, 0.05, 0.10, 0.20) using the method of constant stimuli, with five
different target contrasts per condition. Each observer completed 3200
trials in this experiment (4 noise levels � 5 target contrasts per noise
level � 80 trials per target � 2 target frequencies). Each block contained
50 trials. To minimize observer uncertainty, trials were blocked by stim-
ulus and noise contrast. The target stimulus was also presented at the
beginning of each block, and then again every 10 trials, throughout the
experiment.

In target detection tasks, stimulus (e.g., pixel) noise is under experi-
mental control. Internal noise is not. Both noise types influence target
detection thresholds. Target contrast power at threshold is a function of
stimulus noise CT

2 ��pix� � �pix
2 � �internal

2 and is proportional to the sum
of pixel and internal noise variances (Burgess et al., 1981); the constant of
proportionality depends on the target. This fact can be leveraged to esti-
mate the internal noise that limits detection performance. For exam-
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ple, when stimulus noise and internal noise have equal variance, the
squared detection threshold will be twice what it is when pixel noise is
zero: CT

2 ��pix � �internal� � 2CT
2 ��pix � 0�. The amount of stimulus

noise required to double thresholds is known as the equivalent input
noise. The amount of internal noise that limits performance in a target
detection task can therefore be estimated from the pattern of detection
thresholds. The estimate of equivalent input noise from the detection
experiment sets an upper bound on the amount of early noise in the
human visual system (see Results).

Stimuli: speed discrimination experiment. Natural image movies were
created by texture-mapping randomly selected patches of calibrated nat-
ural images onto planar surfaces, and then moving the surfaces behind a
stationary 1.0° aperture. The movies were restricted to one dimension of
space by vertically averaging each frame of the movie (Burge and Geisler,
2015). Each movie subtended 1.0° of visual angle. Movie duration was
250 ms (15 frames at 60 Hz). All stimuli were windowed with a raised-
cosine window in space and a flattop-raised-cosine window in time. The
transition regions at the beginning and end of the time window each
consisted of four frames; the flattop of the window in time consisted of
seven frames. Contrast was computed under the space-time window.
To prevent aliasing, stimuli were low-pass filtered in space and
time before presentation (Gaussian filter in frequency domain with
�space � 4 cpd, �time � 30 Hz). No aliasing was visible. Training and
test sets of naturalistic stimulus movies were generated. The training set
had 10,500 unique stimuli (500 stimuli � 21 speeds); the test set had
61,000 unique stimuli (1000 stimuli � 61 speeds). Training stimuli were
used to develop the ideal observer (see below). Test stimuli were used to
evaluate the ideal and human observers in the speed discrimination ex-
periment.

All stimuli were set to have the same mean luminance as the back-
ground and had an RMS contrast of 0.14 (equivalent to 0.20 Michelson
contrast for sinewave stimuli), the modal contrast of the stimulus ensem-
ble. The RMS contrast is given by the following:

CRMS � ��x
c2( x)w( x)

�
x

w( x)
(1)

where c(x) is a Weber contrast image movie, w(x) is the space-time
window, and x � {x, y, t} is a vector of space-time positions. Stimuli were
contrast fixed because contrast is known to affect speed percepts, and our
focus was on how differences in Weber contrast patterns between stimuli
impact performance rather than on how differences in overall contrast
impact performance, which have already been intensively studied
(Thompson, 1982; Weiss et al., 2002).

The short (i.e., 250 ms) presentation duration was chosen to approx-
imate the typical duration of a human fixation, and to reduce the possi-
bility that large eye movements would occur while the stimulus was
onscreen. For stimuli with speeds and contrasts similar to those used in
this experiment, the latencies of smooth pursuit eye movements tend to
be 140 –200 ms (Spering et al., 2005). Saccadic latencies tend to be longer
than pursuit latencies.

Procedure: speed discrimination experiment. For the speed discrimina-
tion task, data were collected using a 2IFC procedure. On each trial, a
standard and a comparison image movie were presented in pseudo-
random order (see below). The task was to choose the interval with the
movie having the faster speed. Human observers indicated their choice
via a key press. The key press also initiated the next trial. Feedback was
given. A high tone indicated a correct response; a low tone indicated an
incorrect response. Experimental sessions were blocked by absolute stan-
dard speed. In the same block, for example, data were collected at the �5
and 5°/s standard speeds. Movies always drifted in the same direction
within a trial, but directions were mixed within a block. An equal number
of left- and right-drifting movies were presented in the same block to
reduce the potential effects of adaptation.

In each pass of the experiment (see below), psychometric data were
measured for each of 10 standard speeds (�5, �4, �3, �2, �1°/s) using
the method of constant stimuli. Seven comparison speeds were presented
for each standard speed, spanning a range centered on each standard

speed. Thus, across the entire experiment, observers viewed stimuli with
speeds ranging from 0.25 to 8.00°/s. Each standard-comparison speed
combination was presented 50 times each for a total of 3500 trials (2
directions � 5 standard speeds � 7 comparison speeds � 50 trials).

The exact same naturalistic movie was never presented twice within a
pass of the experiment. Rather, movies were randomly sampled without
replacement from a test set of 1000 naturalistic movies at each speed. For
each standard speed, 350 “standard speed movies” were randomly se-
lected. Similarly, for each of the seven comparison speeds corresponding
to that standard, 50 “comparison speed movies” were randomly selected.
Standard and comparison speed movies were then randomly paired to-
gether. This stimulus selection procedure was used to ensure that the
stimuli used in the psychophysical experiment had approximately the
same statistical variation as the stimuli that were used to train and test
the ideal observer model. Assuming the stimulus sets are representative
and sufficiently large, the stimuli presented in the experiment are likely to
be representative of natural signals.

Ideal observer for speed estimation. As signals proceed through the vi-
sual system, neural states become more selective for properties of the
environment, and more invariant to irrelevant features of the retinal
images. The ideal observer for speed estimation computes the Bayes’
optimal speed estimate from the posterior probability distribution over
speed p(X�R) given the responses R to a stimulus of a small population of
optimal space-time receptive fields (Burge and Geisler, 2015). The recep-
tive fields are assumed to be no larger than the stimulus (i.e., 1.0°) and to
have a temporal integration period no longer than the stimulus duration
(i.e., 250 ms). No restrictions were placed on the smallest size and short-
est integration period of the receptive fields. The receptive fields operate
on captured retinal images that include the constraints of the early visual
system. The optics of the eye, the spatial sampling, wavelength sensitivity,
and temporal integration of the photoreceptors, and response normal-
ization all constrain and shape the information available for further pro-
cessing. Each natural image movie was convolved with a point-spread
function consistent with a 2 mm pupil, a typical size on a bright sunny
day (Wyszecki and Stiles, 1982), and the chromatic aberrations of the
human eye (Thibos et al., 1992). The temporal integration time of the
photoreceptors was 	30 ms, consistent with direct neurophysiologi-
cal measurements (Schneeweis and Schnapf, 1995). Receptive field
responses were normalized consistent with standard practice (Al-
brecht and Geisler, 1991; Heeger, 1992; Carandini and Heeger, 2011;
Burge and Geisler, 2015; Jaini and Burge, 2017; Sebastian et al., 2017;
Iyer and Burge, 2019). Given the constraints imposed by natural stim-
ulus variability and the front-end properties of the early visual system,
the space-time receptive fields and the subsequent computations for de-
coding the speed must be optimal in order for the estimates to be con-
sidered optimal. The most useful stimulus features and the computations
that optimally pool them are jointly dictated by the task and the stimuli.
The receptive fields that encode the most optimal stimulus features for
the task are determined via a recently developed technique called Accu-
racy Maximization Analysis (Geisler et al., 2009; Burge and Jaini, 2017;
Jaini and Burge, 2017). Accuracy Maximization Analysis requires a la-
beled training set, a model of receptive field response, and a cost function
but requires no parametric assumptions about the shape of the receptive
fields. When the training set is representative and sufficiently large, as it is
here, the learned receptive fields support equivalent performance on test
and training stimulus sets.

The joint response of the set of receptive fields to each stimulus is given
by R � fT(c � n)/�c � n� where f is the set of filters, c is the contrast
stimulus, and n is a sample of early noise. The optimal computations for
pooling the responses of the receptive fields are specified by how the
receptive field responses are distributed. The conditional receptive field
responses p�R�Xk� � gauss�R; 0, 
k� are mean zero and jointly Gaussian
after response normalization (Burge and Geisler, 2015; Jaini and Burge,
2017). For any observed response R, the computations that specify the
likelihood L�Xu; R) � p(R�Xu� that an observed response was elicited by
a stimulus moving with speed Xu is obtained by evaluating the response
in the response distribution corresponding to that speed. The responses
must therefore be pooled in a weighted quadratic sum, with weights wu

that are given by simple functions of the covariance matrices �u (Burge
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and Geisler, 2015). A neuron that performs these quadratic computa-
tions outputs a response Ru

L � exp�Qu�R)] � L(Xu; R) that is propor-
tional to the likelihood that a stimulus moving at speed Xu elicited the
response R. After response (e.g., contrast) normalization (Albrecht and
Geisler, 1991; Heeger, 1992; Carandini and Heeger, 2011; Sebastian et al.,
2017; Iyer and Burge, 2019), these likelihood neurons instantiate an
energy-model-like hierarchical LNLN (linear, nonlinear, etc.) cascade
(Adelson and Bergen, 1985; Jaini and Burge, 2017). Thus, the computa-
tions that yield likelihood neurons can be thought of as a recipe,
grounded in natural image and scene statistics, for how to construct
speed-tuned neurons that are maximally selective for speed and maxi-
mally invariant to natural stimulus (i.e., nuisance) variability. Similar
computations yield selective invariant tuning for latent variables, such as
defocus blur, binocular disparity, and 3D motion (Burge and Geisler,
2011, 2012, 2014, 2015).

To obtain the posterior probability of each speed, the likelihood must
be weighted by the prior p(Xu) and normalized by the weighted sum of
likelihoods ��L�X�;R)p(X��. Finally, the optimal estimate must be
“read out” from the posterior probability distribution. In the case
of the 0, 1 cost function (i.e., L0 norm) the optimal estimate
X̂opt � argmax

X
p�X�R) is the posterior maximum. If the prior proba-

bility distribution is flat, which it is in the training and test sets, the
optimal estimate is the latent variable value that corresponds to the max-
imum of the likelihood function (i.e., the maximum of the population
response over the likelihood neurons).

Ideal, degraded, and human decision variables. The ideal decision vari-
able for the task of speed discrimination is obtained by subtracting the
optimal speed estimates corresponding to the comparison and standard
stimuli as follows:

Dideal � X̂ideal
cmp � X̂ideal

std (2)

where X̂ideal
std and X̂ideal

cmp are the ideal observer estimates for the standard
and comparison stimuli, respectively. The total variance of the ideal ob-
server decision variable is 2�ideal

2 , where �ideal
2 is the variance of the ideal

observer estimates across stimuli at a given speed. If the decision variable
is greater than zero, the ideal observer responds that the comparison
stimulus was faster. If the decision variable is less than zero, the ideal
observer responds that the comparison stimulus was slower. Degraded
observer decision variables are similarly obtained, except that the de-
graded observer estimates are obtained by reading out the responses of
suboptimal receptive fields as well as possible.

The human decision variable is a noisy version of the ideal decision
variable, under the hypothesis that human inefficiency is due only to
internal sources of variability (e.g., noise). Specifically,

Dhuman � Dideal � W (3)

where W � N�0, 2�I
2� is a sample of zero mean Gaussian noise, which

corresponds to adding noise with variance �I
2 to the comparison and

standard stimulus speed estimates.
Double-pass experiment. A double-pass experiment requires that each

observer perform all (or a subset) of the unique trials in an experiment
twice. In our experiment, each trial was uniquely identified by its stan-
dard and comparison movies. An observer completed the first pass by
completing each unique trial once over 20 blocks consisting of 175 trials
each. The standard speed was always constant within a block. Blocks were
counterbalanced. The observer completed the second pass by completing
each unique trial again over another 10 blocks. Before collecting data in
the main experiment, each human observer completed multiple practice
sessions to ensure that perceptual learning had stabilized. Analysis of the
practice data showed no significant learning effects. Stimuli presented in
practice sessions were not presented in the main experiment.

Estimating decision variable correlation. Human decision variable cor-
relation is estimated via maximum likelihood methods from the pattern
of human response agreement in the double-pass experiment. The

maximum likelihood parameter estimates are those that maximize the
log-likelihood of the data under a model:

�̂ � argmax LL
�

(4)

where � is a vector of model parameters describing the decision variable
distribution and observer criteria across both passes of the double-pass
experiment. The log-likelihood of the double-pass response data is given
by the following:

LL � N�� ln p����� � N�
 ln p�
��� �

N
� ln p
���� � N

 ln p

��� (5)

where N �� and N 

 are the number of times that the observer chose
standard on both passes or the comparison on both passes, respectively,
and N � 
 and N 
 � are the number of times that the observer chose the
standard on first pass and the comparison on the second and vice versa.
The likelihoods of observing those samples are given by the following:

p�� � �
��

c1 �
��

c2

gauss�D;u,
) (6a)

p�
 � �
��

c1 �
c2

�

gauss�D;u,
) (6b)

p
� � �
c1

��
��

c2

gauss�D;u,
) (6c)

p

 ��
c1

��
c2

�

gauss�D;u,
) (6d)

where D is the joint decision variable across passes with mean u and
covariance 
, and c1 and c2 are the observer criteria on passes 1 and 2.
The mean decision variable values are set equal to the speed difference
�1 � �2 � Xcmp � Xstd between the standard and comparison stimuli
in each condition.

In practice, and without loss of generality, we estimate the decision
variable correlation using normalized decision variables Z. The parame-
ter vector for maximizing the likelihood of the normalized decision vari-
ables is � � �	�, �1

�, �2
�, c1

�, c2
��, where � indicates that the parameter is

associated with the normalized variable, and 	 is the correlation specified
by the covariance �. The integrals in Equations 6a-d can be equivalently
expressed with limits of integration c� � c/�human and integrand
gauss�Z; Mu, M
MT) with normalized mean and normalized covari-
ance as follows:

Mu � � �1
�

�1/�human

�2
�

�2/�human
	T

(7a)

M
MT � � 1
	�

	�

1 	 (7b)

where the normalizing matrix is M � �1/�human

0
0

1/�human
	, and where

�human is the SD of the human estimates. Normalizing the variables has
the practical advantage that it converts the covariance matrix to a corre-
lation matrix, so that it can be fully characterized with a single parameter:
decision variable correlation. It also sets the normalized means equal to
sensitivity d�. We fix the normalized means �1

� � �2
� � dhuman

� to the
human sensitivity measured in the discrimination experiment. We also
fix the normalized criteria to c1

� � c2
� � 0.0, which is justified both by

the data and the experimental design. These choices reduce the number
of parameters to be estimated from five to one.

Efficiency and early noise. Efficiency quantifies the degree to which
human performance falls short of ideal performance. The exact expres-
sion for efficiency is given by the following:
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 � 
 dhuman
�

dideal
� � 2

�
�ideal

2

�human
2 �

�E
2 � �I, early

2

�human
2 (8)

where �ideal
2 and �human

2 are the variances of the ideal and human speed
estimates, and �E

2 and �I, early
2 are the stimulus-driven and early-noise-

driven variances in the ideal speed estimates. The early-noise-driven
variance in the estimates, and consequently in the decision variable, is
distinct from early noise itself, which is defined in the domain of the
image pixels instead of the decision variable. This is analogous to how the
stimulus-driven variance in the decision variable is distinct from stimu-
lus variability. Stimulus variability, like early noise, is defined in the
domain of the image pixels and is non-zero in any set of nonidentical
stimuli having the same value of the latent variable. We computed effi-
ciency using the exact expression in Equation 8 and the approximate
equality presented in the main text, which assumes that the impact of
early noise on the ideal decision variable is negligible (see Results). We
found that, because the maximum possible amount of early noise in the
system is small (i.e., the upper bound on early noise established by the
detection experiment is low), both the exact and the approximate expres-
sions yield similar estimates of efficiency.

Results
The impact of natural stimulus variability, internal noise, and
suboptimal computations can only be distinguished by combin-
ing an ideal observer with appropriate behavioral experiments.
We examine how these factors impact local motion estimation, a
sensory-perceptual ability that is critical for appropriate interac-
tion with the environment (Burge et al., 2019). The plan for the
manuscript is diagrammed in Figure 1A. First, we develop an
image-computable ideal observer model of retinal speed estima-
tion that is constrained by measurements of natural stimulus
variability and early noise. Then we compare human to ideal
performance with matched stimuli in two main experiments with
matched stimuli. The first main experiment shows that humans
track the predictions of the ideal but are consistently less sensi-
tive: one free parameter (efficiency) accounts for the gap between
human and ideal performance. We hypothesize that human in-
efficiency is due to stochastic internal sources of variability (e.g.,
late noise), and not deterministic suboptimal computations. This
hypothesis predicts that natural stimulus variability should
equally limit human and ideal observers. The second main exper-
iment tests this hypothesis. Human observers viewed thousands
of trials with naturalistic stimuli in which each unique trial was

presented twice. In this paradigm, the repeatability of responses
reveals the respective roles of stimulus- and noise-driven vari-
ability. If our hypothesis about the source of human inefficiency
is correct, efficiency should predict response repeatability with
zero additional free parameters. These predictions are confirmed
by the experimental data.

An image-computable ideal observer for estimating retinal
image speed from local regions of natural images is shown in
Figure 1B. Given a set of stimuli, it uses the optimal computations
(encoding receptive fields, pooling, decoding) for estimating
speed from natural image movies (Burge and Geisler, 2015). The
ideal observer thus provides a principled benchmark against
which to compare human performance. The tradition in ideal
observer analysis is to constrain the ideal observer by stimulus
and physiological factors that can be well characterized and are
known to limit the information available for subsequent pro-
cessing (Geisler, 1989). Natural stimulus variability and early
measurement noise are two such factors (Fig. 1B, red text).
The optimal computations govern how these factors propa-
gate into and determine the variance of the ideal decision
variable (Fig. 1B). The ideal decision variable controls ideal
observer performance.

Human performance is typically worse than ideal perfor-
mance. To account for this performance gap, other factors must
be considered. We consider suboptimal computations and
internal noise, both of which have the potential to increase the
variance of the human decision variable relative to the ideal. Sub-
optimal computations are deterministic and reflect a systematic
misuse of the available stimulus information. Internal noise is
random and is uncorrelated with individual stimuli; although we
model it as occurring at the level of the decision variable (Fig. 1B),
our methods do not distinguish between different stochastic internal
sources of variability (see Discussion). To simultaneously determine
the impact of all three factors (natural stimulus variability, subopti-
mal computations, and internal noise), the ideal observer must be
paired with an appropriate psychophysical experiment in which
each factor has a distinct behavioral signature. We perform this ex-
periment and determine the relative importance of each factor. We
find that natural stimulus variability and late noise are the primary
factors limiting human performance. The impact of suboptimal
computations is negligible.

Figure 1. Plan for manuscript and ideal observer. A, Plan for the manuscript. First, we measure natural stimuli and early noise to constrain an ideal observer for speed estimation. Next,
we run an experiment and fit the efficiency of each human observer (one free parameter) by comparing human to ideal sensitivity. Finally, we run a double-pass experiment and show
that efficiency predicts human response repeatability and decision variable correlation (zero free parameters). B, Ideal observer. Speed (i.e., the latent variable) can take on one of many
values. Many different image movies share the same speed. The ideal observer is defined by the optimal computations (encoding, pooling, decoding) for estimating speed with natural
stimuli. The optimal computations are grounded in natural scene statistics (gray box). For each unique movie, the ideal observer outputs a point estimate of speed. The ideal observer’s
estimates vary across movies primarily because of natural stimulus variability, variability that is external to the observer. The degraded ideal observer is matched to overall human
performance by adding late noise.
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Measuring natural stimuli
A fundamental problem of perception is that multiple proximal
stimuli can arise from the same distal cause. This stimulus vari-
ability is an important source of uncertainty that limits human
and ideal speed discrimination performance. To measure natural
stimulus variability, we photographed a large number of natural
scenes (Burge and Geisler, 2011, 2015), and then drifted those
photographs at known speeds behind a 1° aperture, approxi-
mately the size of foveal receptive fields in early visual cortex
(Gattass et al., 1981, 1988). This procedure generates motion
signals that are equivalent to those obtained by rotating the eye
during smooth tracking of a target (Spering et al., 2005; Osborne
et al., 2007) (Fig. 2A). The sampled set of stimuli approximates,
but almost certainly underestimates, the variability present in the
natural stimulus ensemble; looming and discontinuous motions,
for example, are not represented in our training set (Schrater et
al., 2001; Nitzany and Victor, 2014). Thus, the forthcoming esti-
mates of the impact of natural stimulus variability on ideal and
human performance are likely to underestimate the impact of
stimulus variability on human performance in natural viewing.

Movies drifted leftward or rightward with speeds ranging be-
tween 0.25 to 8.0°/s. Movies were presented for 250 ms, the approx-
imate duration of a typical human fixation. The sampling procedure
yielded tens of thousands of unique stimuli (i.e., image movies) at
dozens of unique speeds. Image movies were then filtered so that
only vertical orientations were present; that is, the stimuli were ver-
tically averaged (i.e., xt) versions of full space-time (i.e., xyt) movies
(Fig. 2B). Vertical averaging reduces stimulus complexity, but the
resulting stimuli are still substantially more realistic than classic mo-
tion stimuli, such as drifting sinewaves. Furthermore, vertically ori-
ented receptive fields respond identically to vertically averaged and
original movies (Fig. 2C). Thus, in an individual orientation col-
umn, the filtered movies should generate the same response statistics
as the full space-time movies (Burge and Geisler, 2015; Jaini and
Burge, 2017). Finally, the contrasts of the vertically averaged stimuli
were fixed to the modal contrast in natural scenes (see Discussion).
Thus, our stimuli represent a compromise between simple and real-
world stimuli, allowing us to run experiments with more natural
stimuli without sacrificing quantitative rigor and interpretability.
Our analysis should be generalizable to full space-time movies with
more realistic forms of motion.

Measuring early noise
All measurement devices are corrupted by
measurement noise. The human visual
system is no exception. Early measure-
ment noise occurs at the level of the retinal
image and places a fundamental limit on
how well targets can be detected. Possible
sources of early noise include the Poisson
variability of light itself and the stochastic
nature of the photoreceptor and ganglion
cell responses (Hecht et al., 1942). The
ideal observer for speed discrimination
should be constrained by the same early
noise as the human observer if it is to pro-
vide an accurate indication of the theoret-
ically achievable human performance
limits (Fig. 1A).

Human observers performed a target de-
tection task using the equivalent input noise
paradigm (Burgess et al., 1981; Pelli, 1985).
The task was to detect a known stationary

target embedded in dynamic Gaussian white noise. On each trial,
human observers viewed two stimuli in rapid succession and tried to
identify the stimulus containing the target (Fig. 3A,B). The time
course of stimulus presentation was identical to the forthcoming
speed discrimination experiment. Figure 3C shows psychometric
functions for target detection in 1 human observer as a function of
target contrast. Each function corresponds to a different noise con-
trast. Detection thresholds, which are the target contrasts required to
identify the target interval 76% of the time (i.e., d� of 1.0 in a 2IFC
task), are shown for two different targets (3.0 and 4.5 cpd) in Figure
3D. Consistent with previous studies, contrast power at threshold
increases linearly with pixel noise (Burgess et al., 1981; Pelli, 1985).
Figure 3E shows the same data plotted on logarithmic axes, a com-
mon convention in the literature. There are two critical points on
this function. The first is its value when pixel noise equals zero, where
detection performance is limited only by internal noise. The second
is at double the contrast power of the first point: the so-called “knee”
of the function, where the pixel noise equals the internal noise. This
level of pixel noise is known as the equivalent input noise. The knee
of the function, and thus the estimate of equivalent input noise, is
robust to whether or not the observer is using a detector (e.g., recep-
tive field) that is optimal for detecting the target.

The equivalent input noise was estimated separately for each
target type and human observer. Estimates were consistent across
target types and were thus averaged. Noise estimates for the first,
second, and third human observers are 2.5%, 2.3%, and 2.9%,
respectively (Fig. 3E). These values are in line with previous re-
ports (Burgess et al., 1981; Pelli, 1985; Williams, 1985).

The estimates of equivalent input noise may reflect the exact
amount of early measurement noise alone (Pelli, 1991). The es-
timates of equivalent input noise may also reflect the combined
effect of early measurement noise and noise arising at later pro-
cessing (e.g., decision) stages. Regardless of which possibility is
correct, the target detection experiment provides an upper bound
on the amount of early noise in the human visual system. The
ideal observer used in the main text is limited by early noise at this
upper bound. Because the upper bound is small, early noise only
weakly impacts ideal observer performance (see below).

Ideal observer
An ideal observer performs a task optimally, making the best
possible use of the available information given stimulus variabil-

A B

C

Figure 2. Naturalistic image movies and preprocessing. A, Naturalistic image movies were obtained by drifting photographs of
natural scenes at known speeds behind 1° apertures for 250 ms. Rotating the eye in its socket (e.g., tracking an object) creates the
same pattern of motion in the stationary background. Optical properties of the eye and the temporal integration of the photore-
ceptors were also modeled. B, Full space-time image movies (Ixyt) and vertically filtered space-time image movies (Ixt). Moving
images can be represented as oriented signals in space-time. C, Vertically oriented receptive fields respond identically to full
space-time movies and vertically filtered movies.
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ity and specified biological constraints. In addition to natural
stimulus variability and early noise (Figs. 2, 3), we model the
optics of the eye (Wyszecki and Stiles, 1982; Thibos et al., 1992),
the temporal integration of photoreceptors (Schneeweis and
Schnapf, 1995), and the linear filtering (Hubel and Wiesel, 1962)
and response normalization (Albrecht and Geisler, 1991; Heeger,
1992; Carandini and Heeger, 2011) of cortical receptive fields.
These are all well-established features of early visual processing and
determine the information available for subsequent processing.

Assuming that the relevant factors have been accurately mod-
eled, ideal observers provide principled benchmarks against
which to compare human performance. Given the information
available to a particular stage of processing, ideal observers allow
the researcher to ask whether subsequent processing stages use that
information as well as possible. Humans often track the pattern but
fail to achieve the absolute limits of ideal performance. As a conse-
quence, ideal observers often serve as principled starting points for
determining additional unknown factors that cause humans to fall
short of theoretically achievable performance limits.

Developing an ideal observer with natural stimuli is challeng-
ing because it is unclear a priori which stimulus features are most
useful for the task. We find the optimal receptive fields for speed
estimation using a recently developed Bayesian statistical learn-
ing method called Accuracy Maximization Analysis (Geisler et
al., 2009; Burge and Jaini, 2017; Jaini and Burge, 2017). Given a
stimulus set, the method learns the receptive fields that encode
the most useful stimulus features for the task (Fig. 4A). Once
the optimal features are determined, the next step is to deter-
mine how to optimally pool and decode the responses R �
�R1, R2, . . . , Rn� of those receptive fields where n is the total
number of receptive fields. Eight receptive fields capture es-
sentially all of the useful stimulus information; additional
receptive fields provide negligible improvements in perfor-
mance (Burge and Geisler, 2015).

The optimal pooling rules are specified by the joint statistics
relating the latent variable and the receptive field responses
(Bishop, 2006; Jaini and Burge, 2017). With appropriate response
normalization, the responses across stimuli for each speed are
conditionally Gaussian (Lyu and Simoncelli, 2009; Burge and
Geisler, 2015; Sebastian et al., 2017; Iyer and Burge, 2019) (Fig.
4B). To obtain the likelihood of a particular speed, the Gaussian
response statistics require that the receptive field responses to a
given stimulus be pooled via weighted quadratic summation (Fig.
4C). The computations for computing the likelihood thus instan-
tiate an enhanced version of the motion-energy model, indicat-
ing that energy-model-like computations are the normative
computations supporting speed estimation with natural stimuli
(Adelson and Bergen, 1985; Jaini and Burge, 2017). The speed
tuning curves of hypothetical neurons implementing these com-
putations are approximately log-Gaussian, similar to the approx-
imately log-Gaussian speed tuning curves of neurons in area MT
(Nover et al., 2005) (Fig. 4D). Finally, an appropriate readout of
the population response of these hypothetical neurons is equiva-
lent to decoding the optimal estimate from the posterior proba-
bility distribution p(X�R) over speed (Fig. 4E,F). If a 0, 1 cost
function is assumed, the latent variable value corresponding to
the maximum of the posterior is the optimal estimate. We have
previously verified that reasonable changes to the prior and cost
function do not appreciably alter the optimal receptive fields,
pooling rules, or performance (Burge and Jaini, 2017). This ap-
proach provides a recipe for how to construct neurons that are
highly invariant to nuisance stimulus variability and tightly tuned
to speed. It also provides a normative justification, grounded in
natural scene statistics, for descriptive models proposed to ac-
count for response properties of neurons in cortex (Adelson and
Bergen, 1985; Simoncelli and Heeger, 1998; Perrone and Thiele,
2001; Nover et al., 2005; Rust et al., 2006; Jaini and Burge, 2017).
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Figure 3. Measuring early noise with a target detection experiment. A, Stimulus construction. On each interval, the stimulus was either a stationary target Gabor stimulus or a middle gray field
corrupted by dynamic noise. B, On each trial, the task was to report which of two intervals contained the target stimulus. C, Psychometric functions from 1 human observer (S1) for detecting a 3 cpd
target, in noise having different RMS contrasts (0.00, 0.05, 0.10, 0.20). D, Threshold target contrast power for the same human observer. Thresholds increase linearly with noise contrast power. Error
bars indicate 95% bootstrapped CIs; many error bars are smaller than the symbols. E, Target contrast power at detection threshold plotted on a log-log axis (same data as D) for all three observers.
Arrows indicate the estimate of equivalent input noise.
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The factors thus far described in the paper — stimulus vari-
ability and early noise, biological constraints, and the optimal
computations (encoding, pooling, decoding) — all impact ideal
performance in our task. Given a particular stimulus set, the only
factor subject to some uncertainty is the precise amount of early
noise. However, within the bound set by the detection experi-
ment (Fig. 3), different amounts of early noise have only a minor
effect on ideal performance (see below). Thus, estimates of ideal
performance are set overwhelmingly by stimulus variability.

Measuring efficiency
The ideal observer benchmarks how well humans use the stimu-
lus information available for the task. Efficiency quantifies how
human sensitivity d�human compares with ideal observer sensitivity
d�ideal and is given by the following:


 � 
 dhuman
�

dideal
� � 2

�
�ideal

2

�human
2 �

�E
2

�human
2 (9)

where �human
2 is the total variance of the human decision variable,

�ideal
2 is the total variance of the ideal decision variable, and �E

2 is
the stimulus-driven component of the ideal decision variable.

The third approximate equality in Equation 9 assumes that
stimulus-driven variability equals ideal observer variability be-
cause the impact of early noise is bounded to be small (compare
Fig. 3).

To measure human sensitivity, we ran a 2IFC speed discrim-
ination experiment. On each trial, human observers viewed two
moving stimuli in rapid succession, and indicated which stimulus
was moving more quickly (Fig. 5A). This design is similar to
classic psychophysical experiments with one critical difference.
Rather than presenting the same (or very similar) stimuli in each
condition hundreds of times, we present hundreds of unique
stimuli one time each. This stimulus variability jointly limits
human and ideal performance. Human sensitivity is com-
puted using standard expressions from signal detection theory
dhuman

� � �2��1�PChuman�, where PChuman is the proportion of
times that the comparison is chosen in a given condition in a 2IFC
experiment and ��1� � � is the inverse cumulative normal. (This
expression is correct assuming the observer uses the optimal cri-
terion, an assumption that is justified by the data.)

To measure ideal sensitivity, we ran the ideal observer in a
simulated experiment with the same stimuli as the human. (The

F

E

D

CBA

Figure 4. Ideal observer receptive fields (RFs), response distributions, computations, and estimates. A, Optimal space-time RFs for speed estimation given the naturalistic stimulus set and
biological constraints. B, RF response distributions for RFs 1 and 2, conditioned on the speed of the image movie (colors). Each symbol represents the joint response to an individual movie. The
variability of responses for each speed (color) is due to natural stimulus variability; that is, it is the nuisance stimulus variability in the feature space defined by the optimal RFs. C, Computations of
a hypothetical neuron implementing optimal encoding and pooling. Each noisy, contrast-normalized stimulus is processed by the optimal RFs. The responses of these RFs are pooled in a weighted
quadratic sum. The weights are determined by the response covariance in B corresponding to the neuron’s preferred speed. The response of this hypothetical neuron represents the likelihood that
a given stimulus had its preferred speed. The optimal pooling rules thus represent an LNLN (linear, nonlinear, etc.) cascade. D, Speed-tuning curves of hypothetical neurons implementing optimal
encoding and pooling, whose responses represent the likelihood of each speed given a stimulus. The speed-tuning curve R� L �Xu� is the average likelihood across stimuli at each of many different
speeds. Shaded regions represent � SD CIs on response. This response variability is due to natural stimulus variability. E, An arbitrary stimulus creates a population response RL over hypothetical
speed-tuned neurons. Optimal decoding yields the optimal estimate. F, Ideal observer estimates. The optimal estimate is read out from the population of hypothetical speed-tuned neurons in E, and
is equivalent to reading out the posterior probability distribution p�X�R) over speed. The variance of ideal observer speed estimates (histogram) is dominated by stimulus-driven variance.
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ideal observer was trained on different stimuli than the human
and ideal observers were tested on.) Ideal sensitivity (i.e., d�) was
computed directly from the distributions of ideal observer speed
estimates in each condition (Fig. 5B). Human and ideal sensitiv-
ities across all speeds are linearly related (Fig. 5C). Rearranging
Equation 9 shows that human sensitivity dhuman

� � �
dideal
�

equals the ideal observer sensitivity degraded (scaled) by the
square root of the efficiency. Thus, a single free parameter (effi-
ciency) relates the pattern of human and ideal sensitivities for all
conditions. The efficiencies of the first, second, and third human
observers are 0.43, 0.41, and 0.17, respectively.

Transforming the sensitivity data back into percent compari-
son chosen shows that the details of the degraded ideal nicely
account for the human psychometric functions (Fig. 5D). The
psychometric functions can be summarized by the speed discrim-
ination thresholds (d� � 1.0; 76% correct in a 2IFC task). The
pattern of human and ideal thresholds match; the proportional
increases of the human and ideal threshold functions with speed
are the same (Fig. 5E). These results quantify human uncertainty
� 2

human and show that an ideal observer analysis of naturalistic
stimuli predicts the pattern of human speed discrimination per-
formance, and replicate our own previously published findings
(Burge and Geisler, 2015).

Together, the ideal observer and speed discrimination exper-
iment reveal the degree of human inefficiency (i.e., how far hu-
man performance falls short of the theoretical ideal). But they
cannot determine the sources of this inefficiency. Humans could
be inefficient because of late noise (i.e., stochastic internal sources
of variability arising after early noise). Humans could also be
inefficient because of fixed suboptimal computations. If ineffi-
ciency is due exclusively to late noise, stimulus variability must
equally limit human and ideal observer performance. If human
inefficiency is partly due to suboptimal computations, stimulus
variability will cause more stimulus-driven variability in the hu-
man than in the ideal. How can human behavioral variability be
partitioned to determine the sources of inefficiency in speed per-
ception? To do so, additional experimental tools are required.

Predicting and measuring decision variable correlation
A double-pass experiment, when paired with ideal observer anal-
ysis, can determine why human performance falls short of the
theoretical ideal. In a double-pass experiment (Burgess and Col-
borne, 1988; Gold et al., 1999; Li et al., 2006), each human ob-

server responds to each of a large number of unique trials (the
first pass), and then performs the entire experiment again (the
second pass). Double-pass experiments can “unpack” each point
on the psychometric function (Fig. 6A,B), providing far more
information about the factors driving and limiting human per-
formance than standard single-pass experiments. The correlation
in the human decision variable across passes (decision variable
correlation) is key for identifying the factors that limit perfor-
mance and determine efficiency (Burgess and Colborne, 1988;
Sebastian and Geisler, 2018).

The power of this experimental design is that it enables behav-
ioral variability to be partitioned into correlated and uncorre-
lated factors. Factors that are correlated across passes (e.g., the
stimuli) increase the correlation of the decision variable across
passes. Factors that are uncorrelated across passes (e.g., internal
noise) decrease decision variable correlation. If the variance of
the human decision variable is dictated only by stimulus-driven
variability, decision variable correlation will equal 1.0. If the vari-
ance of the human decision variable is dictated only by internal
noise, decision variable correlation will equal 0.0. If both
stimulus-driven variability and internal noise play a role, the cor-
relation will have an intermediate value.

Decision variable correlation, like the decision variable itself,
cannot be measured directly using standard psychophysical
methods. Rather, it must be inferred from the repeatability of
responses across passes in each condition. The higher the deci-
sion variable correlation, the greater the proportion of times re-
sponses agree (i.e., repeat) in a given condition (Fig. 6B,C).

In each condition, we used the pattern of response agreement
to estimate decision variable correlation (Fig. 6B,C), and then
plotted agreement against the proportion of times the human
observer (symbols) chose the comparison stimulus as faster (Fig.
6D). Human response agreement implies a decision variable cor-
relation that is significantly different from zero. For the seven
conditions shown in Figure 6D (i.e., all comparison speeds at the
1°/s standard speed), the maximum likelihood fit of decision
variable correlation across the seven comparison levels is 0.43.
Thus, 43% of the total variance in the human decision variable is
due to factors that are correlated across repeated presentations of
the same trials.

How should the estimate of decision variable correlation be
interpreted? Human decision variable correlation across passes is
given by the following:

Figure 5. Measuring speed discrimination. A, The task in a 2IFC experiment was to report the interval containing the faster of two naturalistic image movies. Unlike classic psychophysical studies,
which present the same stimuli hundreds of times, the current study presents hundreds of unique stimuli one time each. This design injects naturalistic stimulus variability into the experiment.
Human responses are assumed to be based on samples from decision variable distributions (inset). B, Ideal observer estimates across hundreds of standard (red) and comparison movies (white) at
one standard speed (3°/s) and four comparison speeds. C, Human versus ideal observer sensitivity for all standard and comparison speeds. Shaded regions mark regions of plot where humans are
less efficient than ideal but are still performing the task. For all conditions, humans are less sensitive than the ideal observer by a single-scale factor: efficiency: dhuman

� � �
dideal
� . Negative

d� values correspond to conditions in which the comparison was slower than the standard. D, Psychometric functions for 1 human observer (symbols) at five standard speeds. The degraded ideal
observer (solid curves) matches the efficiency of the human observer (one parameter fit to human data). E, Human speed discrimination thresholds (d�� 1.0) as a function of standard speed for 3
human observers (symbols) on a semilog plot. The pattern of human thresholds matches ideal observer thresholds (solid curve). Vertically shifting the ideal observer thresholds by an amount set by
each human’s efficiency (arrows) shows degraded observer performance (solid curves, one free parameter fit per human).
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where �E
2 is the variance of the speed estimates due to external

(i.e., stimulus) factors, �I
2 is the variance due to internal factors

(e.g., noise), and �human
2 is the total variance of the human speed

estimates. Decision variable correlation is driven by stimulus varia-
tion because the stimuli are perfectly correlated across passes.

The estimated decision variable correlation is strikingly simi-
lar to the efficiency measured for each observer. Although the
exact relationship between decision variable correlation and effi-
ciency depends on the source of human inefficiency, the fact that
they are similar is no accident. Under the hypothesis that all
human inefficiency is due to noise (i.e., stochastic internal factors
that are uncorrelated with the stimuli), stimulus variability must
impact human and ideal observers identically: the stimulus-
driven variance in the human speed estimates (�E

2 in Eq. 10) will
equal the stimulus-driven variance in the ideal observer speed
estimates (�E

2 in Eq. 9). Plugging Equation 9 into Equation 10
shows that, under the stated hypothesis, human decision variable
correlation equals efficiency as follows:

	 � 
 (11)

This mathematical relationship has important consequences. It
means that the estimate of human efficiency from the speed dis-
crimination experiment (Fig. 5C) provides a zero-free parameter
prediction of human decision variable correlation in the double-
pass experiment (Fig. 6). The behavioral data confirm this pre-
diction. Human efficiency in the discrimination experiment
quantitatively predicts human response agreement in the double-
pass experiment (Fig. 6D, symbols vs solid curve). The implica-
tion of this result is striking. It suggests that natural stimulus
variability equally limits human and ideal observers and thus that
the source of human inefficiency is due near-exclusively to late
noise. Human speed discrimination is therefore optimal, except
for the impact of late internal noise.

These results generalize across all conditions and human ob-
servers. Figure 7A shows measured response agreement versus

proportion comparison chosen for the first human observer in
each of the five standard speed conditions. Figure 7B plots mea-
sured response agreement against efficiency-predicted agree-
ment, summarizing the agreement data for each human observer
across all standard speeds; prediction uncertainty given the num-
ber of double-pass trials in each condition is shown as 95% CIs
(shaded regions). The decision variable correlations that best ac-
count for the response repeatability across all conditions of the
first, second, and third human observers are 0.45, 0.43, and 0.18,
respectively. For the first 2 observers, stimulus-driven variance
and noise variance have approximately the same magnitude.
For all observers, the data are consistent with the hypothesis
that decision variable correlation equals efficiency (solid
curves), and data are not consistent with the null model in
which decision variable correlation equals zero (dashed
curves). Figure 7C plots decision variable correlation against
efficiency for each human observer. Efficiency tightly predicts
decision variable correlation for all three human observers,
with zero additional free parameters.

These results must be interpreted with some caution. Uncer-
tainty about the amount of early measurement noise can cause
uncertainty about human efficiency (Eq. 8) and thus about the
predicted decision variable correlation (Eq. 11). We simulated
ideal observers with different amounts of early noise and com-
puted efficiency for each human observer (Fig. 8A). Fortunately,
the detection experiment establishes an upper bound on the
amount of early noise for each human observer (compare Fig. 3),
thereby constraining the uncertainty about the predicted deci-
sion variable correlation (Fig. 8B, red brackets). Because the up-
per bound on early noise is low, the maximum and minimum
possible efficiencies differ by 	10%, depending on whether early
noise at the upper or lower bound is assumed (Fig. 8A,B, red
brackets). The measured decision variable correlation values
(Fig. 8C) are in line with the predictions. Thus, uncertainty about
the amount of early noise has only a minor impact on the inter-
pretation of our results.

In the best performing observers, natural stimulus variability
accounts for nearly half of all behavioral variability, despite the

C DA B

Figure 6. Decision variable correlation and response repeatability in a double-pass experiment. A, Psychometric data from the first human observer and cumulative Gaussian fit plotted as
proportion comparison chosen versus d� for the standard speed of 1°/s (same data as in Fig. 5D). B, Schematic for visualizing decision variable correlation across passes when standard and
comparison speeds are identical (e.g., both equal 1°/s). Samples correspond to individual double-pass trials (small circles). The value of each sample indicates the difference between the estimated
speeds of the comparison and standard stimuli on each trial. Decision variable values corresponding to response agreements and disagreements fall in white and gray quadrants, respectively.
Decision variable distributions with the decision variable correlation predicted by efficiency (solid ellipse) and by the null model with a decision variable correlation of zero (dashed ellipse). Decision
variable correlation depends on the relative importance of correlated and uncorrelated factors across passes. Stimuli are correlated on each repeated trial of a double-pass experiment; internal noise
is not. Criteria on each pass (vertical and horizontal lines, respectively) are assumed to be optimal and at zero. C, Predicted response counts (bars) for each response type (��, �
, 
�, 

)
across passes (100 trials per condition) given the decision variable correlation shown in B. D, Proportion of trials on which responses agreed across both passes of the double-pass experiment as a
function of proportion comparison chosen for 1 human observer. Agreement data (symbols) and prediction (solid curve) assuming that efficiency predicts decision variable correlation (i.e., that all
human inefficiency is due to late noise). The null prediction assumes that the decision variable correlation across passes is zero (dashed curve). The agreement data are predicted directly from the
efficiency of the human observer (zero free parameters). Error bars indicate 68% bootstrapped CIs on human agreement. Shaded regions represent 68% CIs from 10,000 Monte Carlo simulations of
the predicted agreement data assuming 100 trials per condition.
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fact that the naturalistic stimulus set used
to probe speed discrimination perfor-
mance almost certainly underestimates
the importance of stimulus variability in
natural viewing (see Discussion). External
variability therefore shapes the optimal
computations, dictates the pattern of hu-
man performance, and predicts the parti-
tion of behavioral variability (i.e., the
relative importance of external and inter-
nal sources of variability). These findings
motivate continued efforts to model and
characterize how natural stimulus vari-
ability impacts neural and perceptual per-
formance in natural tasks.

Suboptimal computations
Human efficiency equals human decision
variable correlation (Figs. 7C, 8B,C). To
confidently conclude from this result
that human inefficiency is almost en-
tirely due to noise (i.e., stochastic internal sources of variabil-
ity), we must rule out the possibility that suboptimal
computations can produce the same result. How do fixed sub-
optimal computations impact the relationship between effi-
ciency and decision variable correlation? To answer this
question, one must determine how suboptimal computations im-
pact the stimulus-driven component of the decision variable. To do
so, we analyzed the estimates of a degraded observer that subopti-

mally encodes stimulus features (Burgess et al., 1981; Dosher and Lu,
1998; Neri and Levi, 2006; Sebastian and Geisler, 2018). If the wrong
features are encoded, informative features may be missed, irrelevant
features may be processed, and the variance of the stimulus-driven
component of the decision variable may be increased relative to the
ideal.

To create suboptimal feature encoders (i.e., suboptimal recep-
tive fields), we corrupted the optimal receptive fields with fixed

Figure 7. Predicted versus measured response agreement and decision variable correlation. A, Proportion response agreement versus proportion comparison chosen for all five standard speeds
(1–5°/s) for the first human observer. Human data (symbols) and predictions (curves) are shown using the same conventions as in Figure 6D. B, Measured versus predicted response agreement for
all conditions and all human observers (symbols). Human agreement equals efficiency-predicted agreement for all three human observers (solid line). Shaded regions represent 95% CIs on the
prediction from 1000 Monte Carlo simulations. Efficiency-predicted agreement for the null model, which assumes decision variable correlation is zero, is also shown (dashed curve). C, Decision
variable correlation versus efficiency for each human observer (symbols). Human efficiency, measured in first pass of the speed discrimination experiment, tightly predicts human decision variable
correlation in the double-pass experiment with zero free parameters. Error bars indicate 95% bootstrapped CIs on human efficiency and on human decision variable correlation. Shaded regions
represent the expected relationship between efficiency and decision variable correlation if humans use fixed suboptimal computations (i.e., suboptimal receptive fields). Red brackets indicate
uncertainty about the precise value of efficiency due to uncertainty about the precise amount of early noise (Fig. 3). Solid and dashed black lines indicate the best-fit regression lines, corresponding
to receptive field correlations of 0.97 and 0.92, respectively.

A B C

Figure 8. Early noise, efficiency, and predicted decision variable correlation. A, Efficiency in speed discrimination for each
human observer (symbols) changes as a function of the amount of early noise modeled in the ideal observer. If early noise is
negligible, efficiency is given by 
 � �E

2/�human
2 (Eq. 9). If early noise is non-negligible, efficiency is given by 
 � ��E

2

� �I, early
2 )/�human

2 (Eq. 8). Red brackets and shaded regions indicate the minimum and maximum human efficiencies, given
the bound on early noise established by the detection experiment (compare Fig. 3). B, Predicted decision variable correlation for
each human observer given the uncertainty about human efficiency. The maximum (solid line) and minimum (dashed line)
predicted decision variable correlations correspond to ideal observers having the maximum and minimum amount of early noise.
The predicted decision variable correlations differ by 	10% at maximum. C, Measured decision variable correlation for each
human observer. Error bars indicate 95% bootstrapped CIs.
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samples of Gaussian white noise (Fig. 9A). Receptive field corre-
lation (i.e., cosine similarity) quantifies the degree of suboptimal-
ity 	f � fopt

T fsubopt/��fopt� �fsubopt�� where fopt and fsubopt are the
optimal and suboptimal receptive fields, respectively. Compared
with the responses of the optimal receptive fields, the responses of
these suboptimal receptive fields segregate less well as a function
of speed (Fig. 9B). We generated degraded observers with subop-
timal receptive fields having different receptive field correlations
and examined estimation performance (Fig. 9C). We found that
the stimulus-driven variance ��E

2 of the degraded observer esti-
mates is a scaled version of the ideal stimulus-driven variance; the
scale factor � � 1/	f

2 is equal to the squared inverse of receptive
field correlation (Fig. 9D). Thus, suboptimal receptive fields sys-
tematically increase the variance of the stimulus-driven compo-
nent of the decision variable.

If humans are well modeled by a degraded observer with both
suboptimal receptive fields and late noise, the total variance of the
human estimates is given by �human

2 � ��E
2 � �I

2. Replacing
terms in Equations 9 and 10 and performing some simple algebra
show that the relationship between efficiency and decision vari-
able correlation is given by the following:

	 � �
 �



	f
2 (12)

Thus, with suboptimal computations (i.e., receptive fields), deci-
sion variable correlation will be systematically larger than effi-
ciency by the inverse square of receptive field correlation. (When
receptive field correlation equals 1.0, Eq. 12 reduces to Eq. 11.)
For example, if receptive field correlation is 0.5, decision variable
correlation is 4� higher than efficiency. We verified the relation-

ship between decision variable correlation and efficiency by sim-
ulating degraded observers with different levels of suboptimal
computations and late noise (Fig. 9E). As predicted by Equation
12, the more suboptimal the computations (i.e., receptive field
correlations), the more decision variable correlation exceeds ef-
ficiency. We reanalyzed our results in the context of Equation 12,
comparing the behavioral data with the predictions of various
degraded observer models. For all three observers, decision vari-
able correlation is larger than efficiency by 	5%, corresponding
to a receptive field correlation of 0.97 (Fig. 7C). (These numbers
assume an ideal observer with early noise set to the upper bound
established by the detection experiment; Fig. 3). If no early noise
is assumed, then decision variable correlation exceeds efficiency
by 15%, corresponding to a receptive field correlation of 0.92
(Fig. 7C). Thus, no more than 15% of human inefficiency can be
attributed to fixed suboptimal computations.

The simulations just described only consider the potential
impact of fixed suboptimal computations that are linear. We
cannot definitively rule out nonlinear suboptimal computations
that leave stimulus-driven variability unchanged while selectively
amplifying the impact of early noise, making amplified early
noise indistinguishable from late noise. However, such com-
putations are highly unlikely, given current knowledge of early
visual processing. More importantly, suboptimal computa-
tions that selectively amplify early noise will not alter the pre-
dicted relationships between efficiency and decision variable
correlation.

Thus, our results imply that the deterministic computations
performed by the human visual system in speed estimation are
very nearly optimal. Although natural stimulus (i.e., nuisance)

Figure 9. Relationship between suboptimal receptive fields and stimulus-driven variability in degraded observers. A, Optimal receptive fields (top; also see Fig. 4A) and suboptimal receptive
fields from the degraded observer (bottom); only the first two receptive fields of each observer are shown. To obtain a suboptimal receptive field with a particular receptive field correlation 	f, we
added fixed samples of Gaussian white noise to the corresponding optimal receptive field. The variance of the corrupting noise is given by �corrupt

2 � ��1/	f
2) � 1)/N, where N is the number

of pixels defining each receptive field. B, Impact of suboptimal receptive fields on the conditional response distributions p�R�X). As the receptive fields become more suboptimal, the response
distributions (colored ellipses) more poorly distinguish different values of the latent variable (colors). C, Effect of suboptimal receptive fields on degraded observer speed estimates for movies drifting
at one speed (3°/s). As receptive field correlation decreases, the stimulus-driven variance of the estimates increases because informative stimulus features are not encoded and uninformative
features are. D, The proportional increase of stimulus-driven SD for degraded versus the ideal observer estimates, assuming that the degraded observer has no late internal noise. Symbols plot the
mean result from 100 Monte Carlo simulations. The stimulus-driven variance of the speed estimates increases with the squared inverse of receptive field correlation. E, Relationship between decision
variable correlation and efficiency for degraded observers with different combinations of fixed suboptimal computations (i.e., receptive field correlations; gray levels) and internal noise. Points
indicate mean decision variable correlation and mean efficiency from 100 Monte Carlo simulations of each degraded observer.
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variability is a major and unavoidable fac-
tor that limits performance in natural
viewing, its impact is minimized as much
as possible by the computations per-
formed by the visual system.

Stimulus variability and
behavioral variability
In this paper, we have shown that natural
stimulus variability limits behavioral per-
formance and drives response repeatabil-
ity. Thus, reducing stimulus variability
should increase sensitivity (i.e., improve
behavioral performance) but decrease re-
sponse repeatability. To test this predic-
tion, we ran a new speed discrimination
experiment using drifting random-phase
sinewave gratings (Fig. 10). A stimulus set
composed of drifting sinewaves has less
variability than the set of naturalistic stimuli used in the main
experiment. As predicted, with sinewave stimuli human sensitiv-
ity improves (Fig. 10A), responses become less repeatable (Fig.
10B), and decision variable correlation is lower (Fig. 10C). Inter-
estingly, reducing stimulus variability affects decision variable
correlation in the third human observer less than it does in the
first two. This is the expected pattern of results given that the
third observer (S3) had low decision variable correlation with
naturalistic stimuli and was thus already dominated by internal
noise (Figs. 7C, 8C). However, not all of the results were quite as
expected. We anticipated that decision variable correlation
would equal 0.0 for all three human observers with sinewave
stimuli. But decision variable correlation exceeded 0.0 for each
observer. What accounts for this discrepancy? We have ruled out
commonly considered trial order effects (e.g., feedback-based ef-
fects) as the cause (Laming, 1979), but we are unsure of the cause.
Whatever the case, with reduced stimulus variability, internal
noise, which is uncorrelated across stimulus repeats, becomes the
dominant source of variability limiting performance in all human
observers.

Discussion
Simple stimuli and/or simple tasks have dominated behavioral
neuroscience because of the need for rigor and interpretability in
assessing stimulus influences on neural and behavioral responses.
The present experiments demonstrate that, with appropriate
techniques, the required rigor and interpretability can be ob-
tained with naturalistic stimuli. We have shown that image-
computable ideal observers can be fruitfully combined with
human behavioral experiments to reveal the factors that limit
behavioral performance in mid-level tasks with naturalistic stim-
uli. In particular, an image-computable ideal observer, con-
strained by the same factors as the early visual system, predicts the
pattern of human speed discrimination performance with natu-
ralistic stimuli (Burge and Geisler, 2015). Perhaps more remark-
ably, human efficiency in the task predicts human decision
variable correlation in a double-pass experiment without free
parameters, a result that holds only if the deterministic com-
putations performed by humans are very nearly optimal.

Limitations and future directions
One limitation of our approach, which is common to most psy-
chophysical approaches, is that it cannot pinpoint the processing
stage or brain area at which the limiting source of internal vari-

ability arises. Although we model it as noise occurring at the level
of the decision variable, it could also occur at the encoding recep-
tive field responses, the computation of the likelihood, the read-
out of the posterior into estimates, the placement of the criterion
at the decision stage, or some combination of the above. We
believe we have ruled out the possibility that the noise limiting
speed discrimination is early (Fig. 3). But we cannot distinguish
among other stochastic sources of internal variability. These
issues are probably best addressed with neurophysiological meth-
ods. Similarly, our approach cannot distinguish between differ-
ent types of fixed suboptimal computations. We modeled them
by degrading each in the set of optimal receptive fields. But an
array of computations that make fixed suboptimal use of the
available stimulus information could have similar effects.

Another potential issue is that eye movements were not con-
trolled, raising the concern that human and ideal observers were
not on equal footing. If eye movements are stimulus indepen-
dent, they could manifest like internal noise, and decrease deci-
sion variable correlation (Rolfs, 2009; Kowler, 2011). On the
other hand, if different eye movements are reliably elicited by
different stimuli with the same speed (Turano and Heidenreich,
1999; Rucci and Poletti, 2015), they could manifest like subopti-
mal computations, and increase decision variable correlation.
However, we believe that the steps we took to minimize the pos-
sible impact of uncontrolled eye movements are likely to have
been largely successful. First, stimuli were presented for 250 ms,
the approximate duration of a typical fixation, and our stimuli
were above half-maximal contrast for only 	200 ms. Under stim-
ulus conditions (i.e., speeds and contrasts) similar to ours,
smooth pursuit eye movements have a latency of 140 –200 ms
(Spering et al., 2005). Thus, if large eye movements occurred, it is
likely that they would have occurred only in the last fraction of
the trial. Second, numerous reports indicate that, when estimat-
ing motion, humans and other primates tend to weight stimulus
information more heavily at the beginning than at the end of trial
(Yates et al., 2017). Thus, the portion of the trial in which the eyes
are most likely to have been stable is the portion that is most likely
to have contributed to the speed estimate. Finally, fixational eye
movements (i.e., drift, microsaccades, tremor) are likely to have
contributed to our estimate of early measurement noise, and thus
would have equivalently impacted both human and ideal perfor-
mance. Still, given that eye movements can impact speed percepts
under certain conditions (Turano and Heidenreich, 1999;

A B C

Figure 10. Effects of reducing stimulus variability. A, Speed discrimination psychometric functions for the first human observer
with naturalistic stimuli (black curve) and drifting sinewave stimuli (gray curve) for a 1°/s standard speed. Sinewave stimuli can be
discriminated more precisely. B, Proportion response agreement versus proportion comparison chosen for naturalistic stimuli
(black) and artificial stimuli (gray) for the same human observer. C, Decision variable correlation with artificial stimuli versus
decision variable correlation with naturalistic stimuli for each human observer (symbols). Error bars indicate 95% bootstrapped CIs.
Decision variable correlation is consistently lower when artificial stimuli are used.
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Freeman et al., 2010; Goettker et al., 2018), this issue should be
examined rigorously in future experiments.

There are many other possible directions for future work.
First, there is a well-established tradition of examining how
changing overall contrast impacts speed-sensitive neurons and
speed perception (Thompson, 1982; Schrater et al., 2000; Weiss et
al., 2002; Priebe et al., 2003; Priebe and Lisberger, 2004; Jogan and
Stocker, 2015; Gekas et al., 2017). All stimuli in the current ex-
periment were fixed to the most common contrast in the natural
image movie set. As overall contrast is reduced, speed-sensitive
neurons respond less vigorously, and moving stimuli are per-
ceived to move more slowly (Thompson, 1982; Weiss et al., 2002;
Priebe et al., 2003). It is widely believed that these effects occur
because the visual system has internalized a prior for slow speed
(Weiss et al., 2002). In the current manuscript, rather than cov-
ering well-trodden ground, we have focused on quantifying how
image structure (i.e., the pattern of contrast) impacts speed esti-
mation and discrimination. Thus, our results likely underesti-
mate the impact of stimulus variability on ideal and human
performance in natural viewing. The approach advanced in this
manuscript can be generalized to examine how changes in overall
contrast impact human and ideal performance. The role of stim-
ulus variability has not been examined in this context, and may
make an interesting topic for future work. Experiments should
also be performed with full space-time (i.e., xyt) movies, with
stimuli containing looming and discontinuous motion (Schrater
et al., 2001; Nitzany and Victor, 2014). Finally, these same meth-
ods could be applied to a host of other tasks in vision and in other
sensory modalities. New databases of natural images and natural
sounds with corresponding groundtruth information about the
distal scenes will significantly aid these efforts (Adams et al., 2016;
Burge et al., 2016; Traer and McDermott, 2016).

Sources of performance limits
Efforts to determine the dominant factors that limit performance
span research from sensation to cognition. The conclusions that
researchers have reached are as diverse as the research areas in
which the efforts have been undertaken. Stimulus noise (Hecht et
al., 1942), physiological optics (Banks et al., 1987), internal noise
(Burgess et al., 1981; Pelli, 1985, 1991; Williams, 1985), subopti-
mal computations (Dosher and Lu, 1998; Beck et al., 2012; Dru-
gowitsch et al., 2016), trial-sequential dependences (Laming,
1979), and various cognitive factors (Tversky and Kahneman,
1971) have all been implicated as the dominant factors that limit
performance. What accounts for the diversity of these conclu-
sions? We cannot provide a definitive answer. The relative impor-
tance of these factors is likely to depend on several things.

Evolution has pushed sensory-perceptual systems toward the
optimal solutions for tasks that are critical for survival and repro-
duction. Humans are more likely to be assessed as optimal when
visual systems are probed with stimuli that they evolved to pro-
cess in tasks that they evolved to perform. In target detection
tasks, for example, humans become progressively more efficient
as stimuli become more natural (Banks et al., 1987; Abbey and
Eckstein, 2014; Sebastian et al., 2017). Conversely, when stimuli
and tasks bear little relation to those that drove the evolution of
the system, the computations are less likely to be optimal. A new
framework, a science of tasks, would be useful to help reconcile
these disparate findings.

Image-computable ideal observers
Ideal observer analysis has a long history in vision science and
systems neuroscience. In conjunction with behavioral experi-

ments, image-computable ideal observers have shown that hu-
man light sensitivity is as sensitive as allowed by the laws of
physics (Hecht et al., 1942), that the shape of the human contrast
sensitivity function is dictated by the optics of the human eye
(Banks et al., 1987), and that the pattern of human performance
in a wide variety of basic psychophysical tasks can be predicted
from first principles (Geisler, 1989).

To develop an image-computable ideal observer, it is critical
to have a characterization of the task-relevant stimulus statistics.
Obtaining such a characterization has been out of reach for all but
the simplest tasks with the simplest stimuli. The vision and sys-
tems neuroscience communities have traditionally focused on
understanding how simple forms of stimulus variability (e.g.,
Poisson or Gaussian white noise) impact performance (Hecht et
al., 1942; Burgess et al., 1981; Pelli, 1985; Banks et al., 1987;
Frechette et al., 2005). The impact of natural stimulus variability,
the variation in light patterns associated with different natural
scenes sharing the same latent variable values, has only recently
begun to receive significant attention (Geisler and Perry, 2009;
Burge and Geisler, 2011, 2012, 2014, 2015; Kane et al., 2011;
Sebastian et al., 2015, 2017; Schütt and Wichmann, 2017; Kim
and Burge, 2018; Sinha et al., 2018).

Many impactful ideal observer models developed in recent
years are not image-computable (Landy et al., 1995; Ernst and
Banks, 2002; Weiss et al., 2002; Stocker and Simoncelli, 2006;
Burge et al., 2010; Wei and Stocker, 2015). The weakness of these
models is that they do not explicitly specify the stimulus encoding
process, and therefore make assumptions about the information
that stimuli provide about the task-relevant variable (e.g., the
likelihood function in the Bayesian framework). Consequently,
these models cannot predict directly from stimuli how nuisance
stimulus variability will impact behavioral variability, or explain
how information is transformed as it proceeds through the hier-
archy of visual processing stages. Image-computable models are
thus necessary to achieve the goal of understanding how vision
works with real-world stimuli. The current work represents an
important step in that direction.

Impact on neuroscience
Behavioral and neural responses both vary from trial to trial, even
when the value of the latent variable (e.g., speed) is held constant.
In many classic neurophysiological experiments, stimulus vari-
ability is eliminated by design, and experimental distinctions are
not made between the latent variable of interest (e.g., orientation)
and the stimulus (e.g., an oriented Gabor) used to probe neural
response. Such experiments are well suited for quantifying how
different internal factors impact neural variability. Indeed, it has
recently been shown that, under these conditions, neural vari-
ability can be partitioned into two internal factors: a Poisson
point process and systemwide gain fluctuations (Goris et al.,
2014). This approach provides an elegant account of a widely
observed phenomenon (“super-Poisson variability”) (Tomko
and Crapper, 1974; Tolhurst et al., 1981, 1983) that had previ-
ously resisted rigorous explanation. However, the designs of
these classic experiments are unsuitable for estimating the impact
of stimulus variability on neural response.

In the real world, behavioral variability is jointly driven by
external and internal factors. Our results show that both factors
place similar limits on performance. A full account of neural
encoding and decoding must include a treatment of all significant
sources of response variability. Partitioning the impact of realistic
forms of stimulus variability from internal sources of neural vari-
ability will be an important next step for the field.
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