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The lawful imprecision of human surface
tilt estimation in natural scenes
Seha Kim*, Johannes Burge*

Department of Psychology, University of Pennsylvania, Philadelphia, United States

Abstract Estimating local surface orientation (slant and tilt) is fundamental to recovering the

three-dimensional structure of the environment. It is unknown how well humans perform this task in

natural scenes. Here, with a database of natural stereo-images having groundtruth surface

orientation at each pixel, we find dramatic differences in human tilt estimation with natural and

artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and

strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in

natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting

parameters to the human data. The similarities between human and model performance suggest

that the complex human performance patterns with natural stimuli are lawful, and that human visual

systems have internalized local image and scene statistics to optimally infer the three-dimensional

structure of the environment. These results generalize our understanding of vision from the lab to

the real world.

DOI: https://doi.org/10.7554/eLife.31448.001

Introduction
Understanding how vision works in natural conditions is a primary goal of vision research. One mea-

sure of success is the degree to which performance in a fundamental visual task can be predicted

directly from image data. Estimating the 3D structure of the environment from 2D retinal images is

just such a task. However, relatively little is known about how the human visual system estimates 3D

surface orientation from images of natural scenes.

3D surface orientation is typically parameterized by slant and tilt. Slant is the amount by which a

surface is rotated away from an observer; tilt is the direction in which the surface is rotated

(Figure 1A). Compared to slant, tilt has received little attention, even though both are critically

important for successful interaction with the 3D environment. For example, even if slant has been

accurately estimated, humans must estimate tilt to determine where they can walk. Surface with tilts

of 90˚, like the ground plane, can sometimes be walked on. Surfaces with tilts of 0˚ or 180˚, like the

sides of tree trunks, can never be walked on.

Numerous psychophysical, computational, and neurophysiological studies have probed the

human ability to estimate surface slant, surface tilt, and 3D shape. Systematic performance has been

observed, and models have been developed that nicely describe performance. Most previous stud-

ies have used stimuli having planar (Stevens, 1983;Knill, 1998a, 1998b; Hillis et al., 2004;

Burge et al., 2010a; Rosenholtz and Malik, 1997; Rosenberg et al., 2013; Murphy et al., 2013;

Velisavljević and Elder, 2006; Saunders and Knill, 2001; Welchman et al., 2005; Sanada et al.,

2012; Tsutsui et al., 2001) or smoothly curved (Todd et al., 1996; Fleming et al., 2011;

Todd, 2004;Marlow et al., 2015; Li and Zaidi, 2000, 2004; Norman et al., 2006) surface shapes

and regular (Knill, 1998a, 1998b; Hillis et al., 2004; Watt et al., 2005; Rosenholtz and Malik,

1997; Rosenberg et al., 2013; Murphy et al., 2013; Velisavljević and Elder, 2006; Li and Zaidi,

2000, 2004; Welchman et al., 2005) or random-patterned (Burge et al., 2010a; Fleming et al.,

2011) surface markings. These stimuli are not representative of the variety of surface shapes and
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markings encountered in natural viewing. Surfaces in natural scenes often have complex surface

geometries and are marked by complicated surface textures. Thus, performance with simple artificial

scenes may not be representative of performance in natural scenes. Also, models developed with

artificial scenes often generalize poorly (or cannot even be applied) to natural scenes. These issues

concern not just studies of 3D surface orientation perception but vision and visual neuroscience at

large.

Few studies have examined the human ability to estimate 3D surface orientation using natural

photographic images, the stimuli that our visual systems evolved to process. None, to our knowl-

edge, have done so with high-resolution groundtruth surface orientation information. There are

good reasons for this gap in the literature. Natural images are complex and difficult to characterize

mathematically, and groundtruth data about natural scenes are notoriously difficult to collect.

Research with natural stimuli has often been criticized (justifiably) on the grounds that natural stimuli

are too complicated or too poorly controlled to allow strong conclusions to be drawn from the

results. The challenge, then, is to develop experimental methods and computational models that

can be used with natural stimuli without sacrificing rigor and interpretability.

Here, we report an extensive examination of human 3D tilt estimation from local image informa-

tion with natural stimuli. We sampled thousands of natural image patches from a recently collected

stereo-image database of natural scenes with precisely co-registered distance data (Figure 1B)

(Burge et al., 2016). Groundtruth surface orientation was computed directly from the distance data

(see Materials and methods). Human observers binocularly viewed the natural patches and estimated

the tilt at the center of each patch. The same human observers also viewed artificially-textured pla-

nar stimuli matched to the groundtruth tilt, slant, distance, and luminance contrast of the natural

stimuli. First, we compared human performance with natural and matched artificial stimuli. Then, we

compared human performance to the predictions of an image-computable normative model, a

Bayes’ optimal observer, that makes the best possible use of the available image information for the

task. This experimental design enables direct, meaningful comparison of human performance across

stimulus types, allowing the isolation of important stimulus differences and the interpretation of

human response patterns with respect to principled predictions provided by the model.

A rich set of results emerges. First, tilt estimation in natural scenes is hard; compared to perfor-

mance with artificial stimuli, performance with natural stimuli is poor. Second, with natural stimuli,

eLife digest The ability to assess how tilted a surface is, or its ‘surface orientation’, is critical for

interacting productively with the environment. For example, it helps organisms to determine

whether a particular surface is better suited for walking or climbing. Humans and other animals

estimate 3-dimensional (3D) surface orientations from 2-dimensional (2D) images on their retinas.

But exactly how they calculate the tilt of a surface from the retinal images is not well understood.

Scientists have studied how humans estimate surface orientation by showing them smooth (often

planar) surfaces with artificial markings. These studies suggested that humans very accurately

estimate the direction in which a surface is tilted. But whether humans are as good at estimating

surface tilt in the real world, where scenes are more complex than those tested in experiments, is

unknown.

Now, Kim and Burge show that human tilt estimation in natural scenes is often inaccurate and

imprecise. To better understand humans’ successes and failures in estimating tilt, Kim and Burge

developed an optimal computational model, grounded in natural scene statistics, that estimates tilt

from natural images. Kim and Burge found that the model accurately predicted how humans

estimate tilt in natural scenes. This suggests that the imprecise human estimates are not the result of

a poorly designed visual system. Rather, humans, like the computational model, make the best

possible use of the information images provide to perform an estimation task that is very difficult in

natural scenes.

The study takes an important step towards generalizing our understanding of human perception

from the lab to the real world.

DOI: https://doi.org/10.7554/eLife.31448.002
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human tilt estimates cluster at the cardinal tilts (0˚, 90˚, 180˚ and 270˚), echoing the prior distribution

of tilts in natural scenes (Figure 1C) (Burge et al., 2016; Yang and Purves, 2003a;Yang and Purves,

2003b; Adams et al., 2016). Third, human estimates tend to be more biased and variable when the

groundtruth tilts are oblique (e.g., 45˚). Fourth, at each groundtruth tilt, the distributions of human

and model errors tend to be very similar, even though the error distributions themselves are highly

irregular. Fifth, human and model observer trial-by-trial errors are correlated, suggesting that similar

(or strongly correlated) stimulus properties drive both human and ideal performance. Together,

these results represent an important step towards the goal of being able to predict human percepts

of 3D structure directly from photographic images in a fundamental natural task.

Results
Human observers binocularly viewed thousands of randomly sampled patches of natural scenes; they

viewed an equal number of stimuli at each of 24 tilt bins between 0˚ and 360˚. The stimuli were pre-

sented on a large (2.0 � 1.2 m) stereo front-projection system positioned 3 m from the observer.

This relatively long viewing distance minimizes focus cues to flatness. Except for focus cues, the dis-

play system recreates the retinal images that would have been formed by the original scene. Each

scene was viewed binocularly through a small virtual aperture (1˚ or 3˚ of visual angle) positioned 5

arcmin of disparity in front of the sampled point in the scene (Figure 2A); the viewing situation is

akin to looking at the world through a straw (McDermott, 2004). Patches were displayed at the ran-

dom image locations from which they were sampled. Observers reported, using a mouse-controlled

probe, the estimated surface tilt at the center of each patch (Figure 2B). We pooled data across

human observers and aperture sizes and converted the tilt estimates to unsigned tilt for analysis

(signed tilt modulo 180˚) because the estimation of unsigned tilt was similar for all observers and

aperture sizes (Figure 2—figure supplement 1, Figure 2—figure supplement 2). The same observ-

ers also estimated surface tilt with an extensive set of artificial planar stimuli that were matched to

the tilts, slants, distances, and luminance contrasts of the natural stimuli presented in the experi-

ment. (Each planar artificial stimulus had one of three texture types: 1/f noise, 3.5 cpd plaid, and

5.25 cpd plaid; Figure 2—figure supplement 3.) Thus, any observed performance differences

between natural and artificial stimuli cannot be attributed to these dimensions.

Natural and artificial stimuli elicited strikingly different patterns of performance (Figure 2C).

Although many stimuli of both types elicit tilt estimates t̂ that approximately match the groundtruth

tilt (data points on the unity line), a substantial number of natural stimuli elicit estimates that cluster

at the cardinal tilts (data points at t̂ ¼ 0
�; 90�; 180�; 270�). No such clustering occurs with artificial
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Figure 1. Tilt and slant, natural scene database, and tilt prior. (A) Tilt is the direction of slant. Slant is the amount of rotation out of the reference (e.g.,

frontoparallel) plane. (B) Example stereo-image pair (top) and corresponding stereo-range data (bottom). The gauge figure indicates local surface

orientation. To see the scene in stereo 3D, free-fuse the left-eye (LE) and right-eye (RE) images. (C) Prior distribution of unsigned tilt in natural scenes,

computed from 600 million groundtruth tilt samples in the natural scene database (see Materials and methods). Cardinal surface tilts associated with

the ground plane (90˚) and tree trunks (0˚ and 180˚) occur far more frequently than oblique tilts in natural scenes. Unsigned tilt, t ¼ 0
�; 180�½ Þ, indicates

3D surface orientation up to a sign ambiguity (i.e., tilt modulo 180˚).
DOI: https://doi.org/10.7554/eLife.31448.003

Kim and Burge. eLife 2018;7:e31448. DOI: https://doi.org/10.7554/eLife.31448 3 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.31448.003
https://doi.org/10.7554/eLife.31448


BA

LE RE

tilt

slant
axis

direction

LE

C

90

180

270

360

E
s
ti
m

a
te

d
 T

ilt
 (

d
e

g
)

0

7.5K

C
o

u
n

t

0

90

180

M
e

a
n

 E
s
ti
m

a
te

 (
d

e
g

)

0.0

0.2

0.4

0.6

0.8

1.0

C
ir
c
u

la
r 

V
a

ri
a

n
c
e

D E F

180 270 360

Groundtruth Tilt (deg)

0

90

180

270

360

E
s
ti
m

a
te

d
 T

ilt
 (

d
e

g
)

90 180

Estimated Tilt (deg)

0

3K

C
o

u
n

t

Groundtruth Tilt (deg)

0

90

180

M
e

a
n

 E
s
ti
m

a
te

 (
d

e
g

)

Groundtruth Tilt (deg)

0.0

0.2

0.4

0.6

0.8

1.0

C
ir
c
u

la
r 

V
a

ri
a

n
c
e

0 90 1800 90 1800900

180 270 360

Groundtruth Tilt (deg)
90 180

Estimated Tilt (deg) Groundtruth Tilt (deg) Groundtruth Tilt (deg)
0 90 1800 90 1800900

Human Artificial

N
a

tu
ra

l
A

rt
if
ic

ia
l

N
a

tu
ra

l
A

rt
if
ic

ia
l

1° Virtual Window

Natural

1° Virtual Window

Artificial

MMSE  Natural
Human Natural

Figure 2. Experimental stimuli and human tilt responses. (A) The virtual viewing situation. (B) Example natural stimulus (ground plane) and artificial

stimulus (3.5cpd plaid). See Figure 2—figure supplement 3 for all three types. The task was to report the tilt at the center of the small (1˚ diameter)

circle. Aperture sizes were either 3˚ (shown) or 1˚ (not shown) of visual angle. Observers set the orientation of the probe (circle and line segments) to

indicate estimated tilt. Free-fuse to see in stereo 3D. (C) Raw responses for every trial in the experiment. (D) Histogram of raw responses (unsigned

estimates). The dashed horizontal line shows the uniform distribution of groundtruth tilts presented in the experiment. (Histograms of signed tilt

estimates are shown in Figure 2—figure supplement 4.) (E) Estimate means and (F) estimate variances as a function of groundtruth tilt. Human tilt

estimates are more biased and variable with natural stimuli (top) than with artificial stimuli (bottom). Data are combined across all three artificial texture

types; see Figure 2—figure supplement 3 for performance with each individual texture type. With artificial stimuli, human estimates are unbiased and

estimate variance is low. Model observer predictions (minimum mean squared error [MMSE] estimates; black curves) parallel human performance with

natural stimuli.

DOI: https://doi.org/10.7554/eLife.31448.004

The following figure supplements are available for figure 2:

Figure supplement 1. Tilt estimation errors with small vs. large apertures for natural stimuli.

DOI: https://doi.org/10.7554/eLife.31448.005

Figure supplement 2. Tilt estimation performance for individual human observers.

DOI: https://doi.org/10.7554/eLife.31448.006

Figure supplement 3. Summary statistics for the three different artificial stimulus types: 1/f noise, 3.50 cpd plaid, 5.25 cpd plaid (top, middle, and

bottom rows, respectively).

Figure 2 continued on next page
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stimuli. The histogram of the human tilt estimates explicitly shows the clustering, or lack thereof

(Figure 2D). With natural stimuli, the distribution of unsigned estimates pðt̂Þ peaks at 0˚ and 90˚ and
has a similar shape to the prior distribution of groundtruth tilts in the natural scene database

(Figure 1C; also see Figure 2—figure supplement 4). If the database is representative of natural

scenes, then one might expect the human visual system to use the natural statistics of tilt as a tilt

prior in the perceptual processes that convert stimulus measurements into estimates. Standard

Bayesian estimation theory predicts that the prior will influence estimates more when measurements

are unreliable and will influence estimates less when measurements are reliable (Knill and Richards,

1996).

We summarized 3D tilt estimation performance by computing the mean and variance of the tilt

estimates t̂ as a function of groundtruth tilt (Figure 2E,F). (The mean and variance were computed

using circular statistics because tilt is an angular variable; see Materials and methods.) These sum-

mary statistics change systematically with groundtruth tilt, exhibiting patterns reminiscent of the 2D

oblique effect (Appelle, 1972; Furmanski and Engel, 2000; Girshick et al., 2011). With natural

stimuli, estimates are maximally biased at oblique tilts and unbiased at cardinal tilts; estimate vari-

ance is highest at oblique tilts (~60˚ and ~120˚) and lowest at cardinal tilts. With artificial stimuli, esti-

mates are essentially unbiased and are less variable across tilt. The unbiased responses to artificial

stimuli imply that the biased responses to natural stimuli accurately reflect biased perceptual esti-

mates, under the assumption that the function that maps perceptual estimates to probe responses is

stable across stimulus types (see Materials and methods). (See Figure 2—figure supplement 3 for

performance with each individual artificial texture type.) The summary statistics reveal clear differen-

ces between the stimulus types. However, there is more to the data than the summary statistics can

reveal. Thus, we analyzed the raw data more closely.

The probabilistic relationship between groundtruth tilt t and human tilt estimates t̂ is shown in

Figures 3 and 4. Each subplot in Figure 3A shows the distribution of estimation errors p t̂� tjtð Þ for

a different groundtruth tilt. With artificial stimuli, estimation errors e ¼ t̂� t are unimodally distrib-

uted and peaked at zero (black symbols). With natural stimuli, estimation errors are more irregularly

distributed, and the peak locations change systematically with groundtruth tilt (white points). With

cardinal groundtruth tilts (e.g., t ¼ 0
� or t ¼ 90

�), the error distributions peak at zero and large errors

are rare. With oblique groundtruth tilts (e.g., t ¼ 60
� or t ¼ 120

�), the error distributions tend to be

bi-modal with two prominent peaks at non-zero errors. For example, when groundtruth tilt t ¼ 60
�,

the most common errors were �60˚ and 30˚. These errors occurred because observers incorrectly

estimated the tilt to be 0˚ or 90˚, respectively, when the correct answer was 60º. Thus, at this

groundtruth tilt, the human observers frequently (and incorrectly) estimated cardinal tilts instead of

the correct oblique tilt.

Tilt estimates from natural stimuli are less accurate at oblique than at cardinal groundtruth tilts.

Does this fact imply that oblique tilt estimates (e.g., t̂ ¼ 60
�) provide less accurate information about

groundtruth tilt than cardinal tilt estimates (e.g., t̂ ¼ 90
�)? No. Each panel in Figure 4A shows the

distribution of groundtruth tilts p tjt̂ð Þ for each estimated tilt. The most probable groundtruth tilt

equals the estimated tilt, and the variance of each distribution is approximately constant, regardless

of whether the estimated tilt is cardinal or oblique. Furthermore, the estimates from natural and arti-

ficial stimuli provide nearly equivalent information about groundtruth (see also Figure 4—figure sup-

plement 1). Thus, even though tilt estimation performance is far poorer at oblique than at cardinal

tilts and is far poorer with natural than with artificial stimuli, all tilt estimates regardless of the value

are similarly good predictors of groundtruth tilt.

How can it be that low-accuracy estimates from natural stimuli predict groundtruth nearly as well

as high-accuracy estimates from artificial stimuli? Some regions of natural scenes yield high-reliability

measurements that make tilt estimation easy; other regions of natural scenes yield low-reliability

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.31448.007

Figure supplement 4. Histogram of raw responses (estimates) from human observers in the signed tilt domain t ¼ 0
�; 360�½ Þ.

DOI: https://doi.org/10.7554/eLife.31448.008

Figure supplement 5. Tilt estimation performance with full-field (36˚ x 21˚) viewing of natural stimuli.

DOI: https://doi.org/10.7554/eLife.31448.009
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measurements that make tilt estimation hard. When measurements are reliable, the prior influences

estimates less; when measurements are unreliable, the prior influences estimates more. Thus, cardi-

nal tilt estimates can result either from reliable measurements of cardinal tilts or from unreliable

measurements of oblique tilts. On the other hand, oblique tilt estimates can only result from reliable

measurements of oblique tilts, because the measurements must be reliable enough to overcome the

influence of the prior. All these factors combine to make each tilt estimate, regardless of its value,

an equally reliable predictor of groundtruth tilt. The uniformly reliable information provided by the

estimates about groundtruth (see Figure 4A) may simplify the computational processes that opti-

mally pool local estimates into global estimates (see Discussion). The generality of this phenomenon

across natural tasks remains to be determined. However, we speculate that it may have widespread

importance for understanding perception in natural scenes, as well as in other circumstances where

measurement reliability varies drastically across spatial location.

Normative model
We asked whether the complicated pattern of human performance with natural stimuli is consistent

with optimal information processing. To answer this question, we compared human performance to

the performance of a normative model, a Bayes optimal observer that optimizes 3D tilt estimation in

natural scenes given a squared error cost function (Burge et al., 2016). The model takes three local

image cues C as input — luminance, texture, and disparity gradients — and returns the minimum

mean squared error (MMSE) tilt estimate t̂MMSE as output. (The MMSE estimate is the mean of the

posterior probability distribution over groundtruth tilt given the measured image cues.)

To determine the optimal estimate for each possible triplet of cue values, we use the natural

scene database. At each pixel in the database, the image cues are computed directly from the pho-

tographic images within a local area, and the groundtruth tilt is computed directly from the distance

data (see Materials and methods; [Burge et al., 2016]). In other words, the model is ‘image-comput-

able’: the model computes the image cues from image pixels and produces tilt estimates as outputs.

We approximate the posterior mean E tjC½ � ¼
P

t
tp tjCð Þ by computing the sample mean of the

groundtruth tilt conditional on each unique image cue triplet (Figure 5A). The result is a table, or
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predicts human performance even though zero free parameters were fit to the human responses. (B) Raw unsigned tilt estimates with natural stimuli
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‘estimate cube,’ where each cell stores the optimal estimate t̂MMSE ¼ E tjC½ � for a particular combina-

tion of image cues (Figure 5B).

In the cue-combination literature, cues are commonly assumed to be statistically independent

(Ernst and Banks, 2002). In natural scenes, it is not clear whether this assumption holds. Fortunately,

the normative model used here is free of assumptions about statistical independence and the form

of the joint probability distribution (see Discussion). Thus, our normative model provides a principled

benchmark, grounded in natural scene statistics, against which to compare human performance.

We tested the model observer on the exact same set of natural stimuli used to test human

observers (Figure 5C). The model observer predicts the overall pattern of raw human responses (see

also Figure 5—figure supplement 1). More impressively, the model observer predicts the counts,

means, and variances of the human tilt estimates (Figure 2D–F), the conditional error distributions

(Figure 3), and the conditional groundtruth tilt distributions (Figure 4). The model explains a large

proportion of the variance for all of these performance measures (Figure 5D). These results indicate

that human visual system estimates tilt in accordance with optimal processes that minimize error in

natural scenes. We conclude that the biased and imprecise human tilt estimates with natural stimuli

are nevertheless lawful.

Two points are worth emphasizing. First, this model observer had no free parameters that were

fit to the human data (Burge et al., 2016); instead, the model observer was designed to perform

the task optimally given the three image cues. Second, the close agreement between human and

model performance suggests that humans use the same cues (or cues that strongly correlate with

those) used by the normative model (see Discussion).

Trial-by-trial error
If human and model observers use the same cues in natural stimuli to estimate tilt, variation in the

stimuli should cause similar variation in performance. Are human performance and model observer

performance similar in individual trials? The same set of natural stimuli was presented to all observ-

ers. Thus, it is possible to make direct, trial-by-trial comparisons of the estimation errors that each

observer made. If the properties of individual natural stimuli influence estimates similarly across

observers, then observer errors across trials should be correlated. Accounting for trial-by-trial errors

is one of the most stringent comparisons that can be made between model and human

performance.

Natural stimuli do elicit similar trial-by-trial errors from human and model observers (Figure 6A).

The model predicts trial-by-trial human errors far better than chance. We quantify the model-human

similarity with the circular correlation coefficients of the trial-by-trial model and human estimates

(Figure 6B). The correlation coefficients are significant. This result implies that the errors are system-

atically and reliably dependent on the properties of natural stimuli and that these properties affect

human and model observers similarly.

However, because both human and model observers produced biased estimates with natural

stimuli (Figure 2E, Figure 2—figure supplement 2), it is possible that the biases are responsible for

the error correlations. To remove the possible influence of bias, we computed the bias-corrected

error. On each trial, we subtracted the observer bias at each groundtruth tilt e� ¼ t̂� tð Þ
zfflfflffl}|fflfflffl{

error

�Eðt̂� tjt
zfflfflffl}|fflfflffl{

bias

Þ

from the raw error. Human and model bias-corrected errors are also significantly correlated

(Figure 6C,D). The human-human correlation (dashed line in Figure 6B,D; see Figure 6—figure sup-

plement 1) sets an upper bound for the model-human correlation. The model-human correlation

approaches this bound in some cases. Other measures of trial-by-trial similarity (e.g., choice proba-

bility; Figure 6—figure supplement 2C) yield similar conclusions. These results show that natural

stimulus variation at a given groundtruth tilt causes similar response variation in human observers

and the model observer.

To ensure that the predictive power of the model observer is not trivial, we developed multiple

alternative models. All other models predict human performance more poorly (Figure 6—figure

supplement 2). Our results do not rule out the possibility that another model could predict human

performance better, but the current MMSE estimator establishes a strong benchmark against which

other models must be compared.
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Thus, the normative model, without fitting to the human data, accounts for human tilt estimates

at the level of the summary statistics (Figure 2D–F), the conditional distributions (Figure 3 and Fig-

ure 4), and the trial-by-trial errors (Figure 6). Together, this evidence suggests that the human visual

system’s perceptual processes and the normative model’s computations are making similar use of

similar information. We conclude that the human visual system makes near-optimal use of the avail-

able information in natural stimuli for estimating 3D surface tilt.

Performance-impacting stimulus factors: Slant, distance, and natural
depth variation
In our experiment, natural and artificial stimuli were matched on many dimensions: tilt, slant, dis-

tance, and luminance contrast. These stimulus factors are commonly controlled in perceptual experi-

ments. Consistent with previous reports, slant and distance had a substantial impact on estimation

error (Watt et al., 2005) with both natural and artificial stimuli (Figure 7). (Luminance contrast had

little impact on performance.)

Even after controlling for these stimulus dimensions, tilt estimation with natural stimuli is consider-

ably poorer than tilt estimation with artificial stimuli. Other factors must therefore account for the

differences. What are they? In our experiment, each artificial scene consisted of a single planar sur-

face. Natural scenes contain natural depth variation (i.e., complex surface structure); some surfaces

are approximately planar, some are curved or bumpy. How are differences in surface planarity

related to differences in performance with natural and artificial scenes? To quantify the departure of

surface structure from planarity, we defined local tilt variance as the circular variance of the ground-

truth tilt values in the central 1˚ area of each stimulus. Then, we examined how estimation error

changes with tilt variance.

First, we found that estimation error increases linearly with tilt variance for both human and model

observers (Figure 8A). Unfortunately, tilt variance co-varies with groundtruth tilt — cardinal tilts
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DOI: https://doi.org/10.7554/eLife.31448.011

The following figure supplement is available for figure 4:

Figure supplement 1. Alternative visualization of data in Figures 3 and 4.

DOI: https://doi.org/10.7554/eLife.31448.012
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tend to have lower tilt variance than oblique tilts, presumably because of the ground plane

(Figure 8B)— which means that the effect of groundtruth tilt could be misattributed to tilt variance.

Hence, we repeated the analysis of overall error separately for cardinal tilts alone and for oblique

tilts alone. We found that the effect of tilt variance is independent of groundtruth tilt (Figure 8C).

Thus, like slant and distance, tilt variance (i.e., departure from surface planarity) is one of several key

stimulus factors that impacts tilt estimation performance.

Second, we found that for near-planar natural stimuli, average estimation error with natural and

artificial stimuli are closely matched (left-most points in Figure 8A). Does this result mean that tilt

variance accounts for all performance differences between natural and artificial stimuli? No. Perfor-

mance with near-planar natural stimuli is still substantially different from performance with artificial

stimuli (Figure 8—figure supplement 1). In addition, individual human and model trial-by-trial esti-

mation errors are still correlated for the near-planar natural stimuli. Furthermore, the patterns of

human performance with natural stimuli are robust across a wide range of tilt variance. Figure 9

shows the summary statistics (estimate counts, means, and variances; cf. Figure 2D–F) for multiple

different tilt variances of human observers. Model performance is also similarly robust to tilt variance

(Figure 9—figure supplement 1).

We conclude that although tilt variance is an important performance-modulating factor, it is not

the only factor responsible for performance differences with natural and artificial stimuli. Other fac-

tors must be responsible. Understanding these other factors is an important direction for future

work.
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distance data. (B) MMSE estimates for ~260,000 (643) unique image cue triplets are stored in an ‘estimate cube.’ (C) Model observer estimates for the

3600 unique natural stimuli used in the experiment. For each stimulus used in the experiment, the image cues are computed, and the MMSE estimate is

looked up in the ‘estimate cube.’ Excluding the 3600 experimental stimuli from the 600 million stimuli that determined the estimate cube has no impact

on predictions. The optimal estimates within the estimate cube change smoothly with the image cue values; hence, a relatively small number of

samples can explore the structure of the full 3D space and provide representative performance measures (see Discussion). (D) Proportion variance

explained (R2) by the normative model for the summary statistics (estimate counts, means, and variances; Figure 2D–F) and the conditional

distributions (Figures 3 and 4). All R2 values are highly significant (p<10�6).

DOI: https://doi.org/10.7554/eLife.31448.013

The following figure supplement is available for figure 5:

Figure supplement 1. Unsigned tilt estimates: human observers and normative model.

DOI: https://doi.org/10.7554/eLife.31448.014
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Discussion
Estimating 3D surface orientation requires the estimation of both slant and tilt. The current study

focuses on tilt estimation. We quantify performance in natural scenes and report that human tilt esti-

mates are often neither accurate nor precise. To connect our work to the classic literature, we

matched artificial and natural stimuli on the stimulus dimensions that are controlled most often in

typical experiments. The comparison revealed systematic performance differences. The detailed pat-

terns of human performance are predicted, without free parameters to fit the data, by a normative

model that is grounded in natural scene statistics and that makes the best possible use of the avail-

able image information. Importantly, this model is distinguished from many models of mid-level

visual tasks because it is ‘image computable’; that is, it takes image pixels as input and produces tilt

estimates as output. Together, the current experiment and modeling effort contributes to a broad

goal in vision and visual neuroscience research: to generalize our understanding of human vision

from the lab to the real world.

Generality of conclusions and future directions
Influence of full-field viewing
The main experiment examined tilt estimation performance for small patches of 3D natural scenes

(1˚ and 3˚ of visual angle). Does tilt estimation performance improve substantially with full-field view-

ing of the 3D natural scenes? We re-ran the experiment with full-field viewing (36˚ x 21˚; see

Figure 1B for an example full-field scene). We found that human performance is essentially the same

(Figure 2—figure supplement 5). Although it may seem surprising that full-field viewing does not

substantially improve performance, it makes sense. Scene structure is correlated only over a local
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plots indicates that trial-by-trial errors are correlated. (A) Raw trial-by-trial errors with natural stimuli between

model and human observers. (B) Correlation coefficients (circular) for trial-by-trial errors between model and each
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correlation coefficient. The dashed line shows the mean of the correlation coefficients of errors between human

observers in natural stimuli (Figure 6—figure supplement 1). (C) Bias-corrected errors in natural stimuli. (D)

Correlation coefficient for bias-corrected errors.

DOI: https://doi.org/10.7554/eLife.31448.015

The following figure supplements are available for figure 6:

Figure supplement 1. Trial-by-trial estimation errors between humans.

DOI: https://doi.org/10.7554/eLife.31448.016

Figure supplement 2. Six alternative models for predicting human tilt estimation performance.

DOI: https://doi.org/10.7554/eLife.31448.017
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area. Except for the ground plane, it is unusual for surfaces to have constant orientation over large

visual angles. Thus, scene locations far from the target add little information about local tilt.

Influence of scale
Groundtruth surface orientation is computed from a locally planar approximation to the surface

structure, but surfaces in natural scenes are generally non-planar. Hence, the area over which

groundtruth tilt is computed can affect the values assigned to each surface location. The same is

true of the local image cue values. We checked how sensitive our results are to the scale of the local

analysis area. We recomputed groundtruth tilt for two scales and recomputed image cue values for

four scales (see Materials and methods). All eight combinations of scales yield the same qualitative

pattern of results.

Influence of gaze angle
The statistics of local surface orientation change with elevation in natural scenes (Adams et al.,

2016; Yang and Purves, 2003b). In our study, scene statistics were computed from range scans and

stereo-images (36˚ x 21˚ field-of-view) that were captured from human eye height with earth parallel

gaze (Burge et al., 2016). Different results may characterize other viewing situations, a possibility

that could be evaluated in future work. However, the vast majority of eye movements in natural

scenes are smaller than 10˚ (Land and Hayhoe, 2001; Pelz and Rothkopf, 2007; Dorr et al., 2010).

Hence, the results presented here are likely to be representative of an important subset of condi-

tions that occur in natural viewing.

Influence of internal noise
We examined how well the normative model (i.e., MMSE estimator) predicts human performance

with artificial stimuli. The model nicely predicts the unbiased pattern of human estimate means.

However, the model predicts estimate variances that are lower than the human estimate variances

that we observed (although the predicted and observed patterns are consistent). We do not yet

understand the reason for this discrepancy. One possibility is that the normative model used here

does not explicitly model how internal noise affects human performance. In natural scenes, natural

stimulus variability may swamp internal noise and be the controlling source of uncertainty. But with
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artificial stimuli, an explicit model of internal noise may be required to account quantitatively for the

variance of human performance. Determining the relative importance of natural stimulus variability

and internal noise is an important topic for future work.

Influence of sampling error
The natural stimuli presented in the experiment were chosen via constrained random sampling (see

Materials and methods). Random stimulus sampling increases the likelihood that the reported per-

formance levels are representative of generic natural scenes. One potential concern is that the rela-

tively small number of unique stimuli that can be practically used in an experiment (e.g., n = 3600 in

this experiment) precludes a full exploration of the space of optimal estimates (see Figure 5B). For-

tunately, the tilt estimates from the normative model change smoothly with image cue values. Sys-

tematic sparse sampling should thus be sufficient to explore the space. To rigorously determine the

influence of each cue on performance, future parametric studies should focus on the role of particu-

lar image cue combinations and other important stimulus dimensions such as tilt variance.

Influence of non-optimal cues
Although the three local image cues used by the normative model are widely studied and commonly

manipulated, there is no guarantee that they are the most informative cues in natural scenes. Auto-

matic techniques could be used to find the most informative cues for the task (Geisler et al., 2009;

Burge and Jaini, 2017;Jaini and Burge, 2017). These techniques have proven useful for other visual

estimation tasks with natural stimuli (Burge and Geisler, 2011Burge and Geisler,

2012, 2014, 2015). However, in the current task, we speculate that different local cues are unlikely

to yield substantially better performance (Burge et al., 2016). Also, given the similarities between

human and model observer performance, any improved ability to predict human performance is

likely to be modest at best. Nevertheless, the only way to be certain is to check.
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Figure 8. The effect of tilt variance on tilt estimation error. (A) Absolute error increases linearly with tilt variance. Estimation error increases

approximately 25˚ across the range of tilt variance. Artificial stimuli were perfectly planar and had zero local depth variation; hence the individual data

point at zero tilt variance. Solid curve shows the model prediction. (B) Tilt variance co-varies with groundtruth tilt. Oblique tilts tend to be associated

with less planar (i.e., more bumpy) regions of natural scenes. (Tilt variance was computed in 15˚ wide bins.) (C) Same as (A) but conditional on whether

groundtruth tilts are cardinal (red, 0˚ ± 22.5˚ or 90˚ ± 22.5˚) or oblique (blue, 45˚ ± 22.5˚ or 135˚ ± 22.5˚, shaded areas in [B]). Data points are spaced

unevenly because they are grouped in quantile bins, such that each data point represents an equal number of stimuli. The solid curves represent the

errors of the MMSE estimator for cardinal (red) and oblique (blue) groundtruth tilts. The normative model predicts performance in all cases.

DOI: https://doi.org/10.7554/eLife.31448.019

The following figure supplement is available for figure 8:

Figure supplement 1. Tilt estimation performance with near-planar natural stimuli .

DOI: https://doi.org/10.7554/eLife.31448.020
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3D surface orientation estimation
The estimation of the 3D structure of the environment is aided by the joint estimation of tilt and

slant (Marr’s ‘2.5D sketch’) (Marr, 1982). Although we have shown that human and model tilt estima-

tion performance are systematically affected by surface slant (Figure 7A), the current work only

addresses the human ability to estimate unsigned tilt. We have not yet explicitly modeled how

humans estimate signed tilt, how humans estimate slant, or how humans jointly estimate slant and

tilt. We will attack these problems in the future.

Cue-combination with and without independence assumptions
The standard approach to modeling cue-combination, sometimes known as maximum likelihood

estimation, includes a number of assumptions: a squared error cost function, cue independence,

unbiased Gaussian-distributed single cue estimates, and a flat or uninformative prior (Ernst and

Banks, 2002) (but see [Oruç et al., 2003]). The approach used here (normative model; see Figure 5)

assumes only a squared error cost function, and is guaranteed to produce the Bayes optimal esti-

mate given the image cues, regardless of the common assumptions . In natural scenes, it is often

unclear whether the common assumptions hold. Methods with relatively few assumptions can there-

fore be powerful tools for establishing principled predictions. We have not yet fully investigated how

the image cues are combined in tilt estimation, but we have conducted some preliminarily analyses.

For example, a simple average of the single-cue estimates (each based on luminance, texture, or dis-

parity alone) underperforms the three-cue normative model. This result is not surprising given that

the individual cues are not independent, that the single cue estimates do not follow Gaussian distri-

bution, and that the tilt prior is not flat. However, the current study is not specifically designed to

examine the details of cue combination in tilt estimation. To examine cue-combination in this task

rigorously, a parametric stimulus-sampling paradigm should be employed, a topic that will be

explored in future work.

Local and global tilt estimation
A grand problem in perception and neuroscience research is to understand how local estimates are

grouped into more accurate global estimates. We showed that local tilt estimates are unbiased pre-

dictors of groundtruth tilt and have nearly equal reliability (Figure 4). This result implies that optimal
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DOI: https://doi.org/10.7554/eLife.31448.021

The following figure supplement is available for figure 9:

Figure supplement 1. Tilt estimation performance of the normative model with natural stimuli for five tilt variance quintiles.

DOI: https://doi.org/10.7554/eLife.31448.022
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spatial pooling of the local estimates may be relatively simple. Assuming statistical independence (i.

e., naı̈ve Bayes), optimal spatial pooling is identical to a simple linear combination of the local esti-

mates: the straight average of N local estimates t̂global ¼ 1

N

PN
i t̂

local
i . Of course, local groundtruth tilts

and estimates are spatially correlated, so the independence assumption will not be strictly correct.

However, the spatial correlations could be estimated from the database and incorporated into the

computations. Our work thus lays a strong empirically grounded foundation for the investigation of

local-global processing in surface orientation estimation.

Behavioral experiments with natural images
In classic studies of surface orientation perception, stimuli are usually limited in at least one of two

important respects. If the stimuli are artificial (e.g., computer-graphics generated), groundtruth sur-

face orientation is known but lighting conditions and textures are artificial, and it is uncertain

whether results obtained with artificial stimuli will generalize to natural stimuli. If the stimuli are natu-

ral (e.g., photographs of real scenes), groundtruth surface orientation is typically unknown which

complicates the evaluation of the results. The experiments reported here used natural stereo-images

with laser-based measurements of groundtruth surface orientation, and artificial stimuli with tilt,

slant, distance, and contrast matched to the natural stimuli. This novel design allows us to relate our

results to the classic literature, to determine the generality of results with both natural and artificial

stimuli and to isolate performance-controlling differences between the stimuli. In particular, we

found that tilt variance is a pervasive performance-altering feature of natural scenes that is not

explicitly considered in most investigations. The human visual system must nevertheless contend

with tilt variance in natural viewing. We speculate that characterizing its impact is likely to be funda-

mental for understanding 3D surface orientation estimation in the real-world, just as characterizing

the impact of local luminance contrast has been important for understanding how humans detect

spatial patterns in noise (Burgess et al., 1981).

Perception and the internalization of natural scene statistics
The current study is the latest in a series of reports that have attempted, with ever increasing rigor,

to link properties of perception to the statistics of natural images and scenes. Our contribution

extends previous work in several respects. First, previous work demonstrated similarity between

human and model performance only at the level of summary statistics (Girshick et al., 2011;

Burge et al., 2010b; Weiss et al., 2002; Stocker and Simoncelli, 2006). We demonstrate that a

principled model, operating directly on image data, predicts the summary statistics, the distribution

of estimates, and the trial-by-trial errors. Second, previous work showed that human observers

behave as if their visual systems have encoded the task-relevant statistics of 2D natural images

(Girshick et al., 2011). We show that human observers behave as if they have properly encoded the

task-relevant joint statistics of 2D natural images and the 3D properties of natural scenes (also see

(Burge et al., 2010b)). Third, previous work tested and modeled human performance with artificial

stimuli only (Girshick et al., 2011; Burge et al., 2010b; Weiss et al., 2002; Stocker and Simoncelli,

2006). We test human performance with both natural and artificial stimuli. The dramatic, but lawful,

changes in performance with natural stimuli highlight the importance of studies with the stimuli that

visual systems evolved to process.

Materials and methods

Apparatus
The stereo images were presented with a ViewPixx Technologies ProPixx projector fitted with a 3D

polarization filter. Left and right images were presented sequentially at a refresh rate of 120 Hz (60

Hz per eye) and with the same resolution of the two images (1920 � 1080 pixel). The observer was

positioned 3.0 m from a 2.0 � 1.2 m Harkness Clarus 140 XC polarization maintaining projection

screen. This viewing distance minimizes the potential influence of screen cues to flatness (e.g., blur).

Human observers wore glasses with passive (linear) polarized filters to isolate the image for the left

and right eyes. The observer’s head was stabilized with a chin- and forehead-rest. From this viewing

position, the projection screen subtended 36˚ x 21˚ of visual angle. The disparity-specified distance

created by this projection system matched to the distances measured in the original natural scenes.
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The projection display was linearized over 10 bits of gray level. The maximum luminance was 84 cd/

m2. The mean luminance was set to 40% of the projection system’s maximum luminance.

Participants
Three human observers participated in the experiment; two were authors, and one was naı̈ve about

the purpose of the experiment. Informed consent was obtained from participants before the experi-

ment. The research protocol was approved by the Institutional Review Board of the University of

Pennsylvania and is in accordance with the Declaration of Helsinki.

Experiment
Human observers binocularly viewed a small region of a natural scene through a circular aperture (1˚
or 3˚ diameter) positioned 5 arcmin of disparity in front of the scene point along the cyclopean line

of sight. Observers communicated their tilt estimate with a mouse-controlled probe. Each observer

viewed 3600 unique natural stimuli (150 stimuli per tilt bin x 24 tilt bins) presented with each of two

apertures in the experiment (7200 total). Natural stimuli were constrained to be binocularly visible

(no half-occlusions), to have slants larger than 30˚, to have distances between 5 m and 50 m, and to

have contrasts between 5% and 40%. Each observer also viewed 1440 unique artificial stimuli (60

stimuli per tilt bin x 24 tilt bins) with two apertures (2880 total). Artificial stimuli (1/f noise and phase-

and orientation-randomized plaids) were matched to the natural stimuli on multiple additional

dimensions (tilt, slant, distance, and contrast). Natural stimuli were presented in 48 blocks of 150 tri-

als each, and artificial stimuli were presented in 12 blocks of 240 trials each, with interleaved blocks

using small and large apertures.

Data analysis
Tilt is a circular (angular) variable. We computed the mean, variance, and error using standard circu-

lar statistics. The circular mean is defined as �t ¼ arg R½ � where R ¼
P

t
exp jt½ �

� �
=N is the complex

mean resultant vector. The circular variance is defined as var tð Þ ¼ 1� jRj. Estimation error e ¼

arg exp j t̂� tð Þ½ �½ � is the circular distance between the tilt estimate and groundtruth.

Groundtruth tilt
Groundtruth tilt t is computed from the distance data (range map r) co-registered to each natural

image in the database. We defined groundtruth tilt tan�1 ryr=rxr
� �

as the orientation of the normal-

ized range gradient (Marr, 1982). The range gradient was computed by convolving the distance

data with a 2D Gaussian kernel having space constant s and then taking the partial derivatives in the

x and y image directions (Burge et al., 2016). For the results presented in this manuscript, ground-

truth tilt was computed using a space constant of s ¼ 3 arcmin; doubling this space constant does

not change the qualitative results. The space constants correspond to kernel sizes of ~0.25˚�0.50˚.

Image cues to tilt
Image cues to tilt (disparity, luminance, and texture cues) were computed directly from the images.

Like groundtruth tilt, image cues were defined as the orientation tan�1 rycue=rxcue
� �

of the local dis-

parity and luminance gradients. The local disparity gradient is computed from the disparity image,

which is obtained from the left and right eye luminance images via standard local windowed cross-

correlation (Burge et al., 2016; Tyler and Julesz, 1978; Banks et al., 2004). The window for cross-

correlation had the same space constant as the derivative operator that was used to compute the

gradient (see below). The texture cue to tilt is defined as the orientation of the major axis of the local

amplitude spectrum of the luminance image. This texture cue is non-standard (but see

[Fleming et al., 2011]). However, this texture cue is more accurate in natural scenes than traditional

texture cues (Burge et al., 2016; Clerc and Mallat, 2002; Galasso and Lasenby, 2007; Malik and

Rosenholtz, 1997; Massot and Hérault, 2008). For the main results presented in this manuscript,

image cues were computed from the gradients using a space constant of s ¼ 6 arcmin; using the

space constants to s ¼3, 6, 9, or 12 arcmin does not change the qualitative results. The space con-

stants correspond to kernel sizes of ~0.25˚�1.0˚.
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Local luminance contrast
Luminance contrast was defined as the root-mean-squared luminance values within a local area

weighted by a cosine window. Specifically, luminance contrast is C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

x2A

IðxÞ � �Ið Þ=�Ið Þ
2
WðxÞ

� �

=
P

x2A

WðxÞ

s

where x is the spatial location, W is a cosine window with area

A, and �I ¼
P

x2A

IðxÞWðxÞ

� �

=
P

x2A

WðxÞ is the local mean intensity.

The output-mapping problem
On each trial, human observers communicated their perceptual estimate t̂ by making a response t̂rsp

with a mouse-controlled probe. Unfortunately, the responses are not guaranteed to equal the per-

ceptual estimates. An output-mapping function t̂rsp ¼ g t̂ð Þ relates the response to the perceptual

estimate, and an estimation function t̂ ¼ f tð Þ relates the estimate to the groundtruth tilt of each

stimulus. When responses are biased, it is hard to conclude whether the biases are due to the out-

put-mapping function or to the estimation function. When responses are unbiased, a stronger case

can be made that the human responses equal the perceptual estimates. To obtain unbiased

responses t̂rsp ¼ t from biased estimates t̂ 6¼ t, the output mapping function would have to equal

exactly the inverse of a biased estimation function: g :ð Þ ¼ f�1 :ð Þ; this possibility seems unlikely and

has no explanatory power. Thus, by Occam’s razor, unbiased responses imply unbiased output-map-

ping and estimation functions: t̂rsp ¼ t̂ ¼ t. Human responses to artificial stimuli were unbiased

(Figure 2E), implying an unbiased output-mapping function. Assuming that the output-mapping

function is stable across stimulus types, we conclude that the biased responses to natural stimuli

accurately reflect biased perceptual estimates.

Monte Carlo simulations
To determine whether the model predictions are representative of randomly sampled natural stimuli,

we simulated 1000 repeats of the experiment. On each repeat, we obtained a different sample of

3600 natural stimuli (150 in each tilt bin) from which we obtained 3600 optimal estimates. The sam-

ples are used to compute 95% confidence intervals on the model predictions, which are shown as

the shaded regions in Figure 3A and Figure 4A.
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Figure 2—figure supplement 1. Tilt estimation errors with small vs. large apertures for natural stimuli. Signed tilt

is defined in t ¼ 0
�
; 360

�½ Þ with slant in [0˚,90˚); unsigned tilt is defined in t ¼[0˚,180˚) and slant in [�90˚,90˚).
Estimation errors are analyzed in both the signed tilt and in the unsigned tilt domain. To reduce the possibility

that individual stimuli were memorized, sessions with small apertures always preceded sessions with large

apertures for a given set of natural stimuli. (A) Mean absolute error in the signed tilt domain across trials in each of

24 experimental sessions. The 3˚ aperture improves signed tilt estimation performance. With a 1˚ aperture,
humans make significantly more sign mistakes (e.g., estimating a tilt of 45˚ when the groundtruth tilt is 225˚). (B)
Mean absolute error in the unsigned tilt domain across trials in each of 24 experimental sessions. Errors with large

and small apertures in the unsigned domain are nearly indistinguishable. (C) Unsigned trial-by-trial errors with

small vs. large windows for each human observer. The errors are strongly correlated, although there are several

examples of 90˚ shifted estimates in the data of Humans 1 and 3. Overall, with unsigned tilt, performance with

small and large windows was nearly equivalent.
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Figure 2—figure supplement 2. Tilt estimation performance for individual human observers. (A) Raw tilt responses from Human 1, represented in the

signed tilt domain t ¼ 0
�
; 360

�½ Þ, for natural and artificial stimuli. (B) Histogram of raw responses (estimates) in the unsigned domain t ¼ 0
�
; 180

�½ Þ. (C)

Mean estimates and (D) estimate variance as a function of groundtruth tilt. (E–H) Same as A–D but for Human 2. (I–L) Same as A–D but for Human 3.
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Figure 2—figure supplement 3. Summary statistics for the three different artificial stimulus types: 1/f noise, 3.50 cpd plaid, 5.25 cpd plaid (top, middle,

and bottom rows, respectively). Estimate variance for 1/f noise texture artificial stimuli is slightly higher than estimate variance with the plaids. The

patterns are otherwise similar.
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Figure 2—figure supplement 4. Histogram of raw responses (estimates) from human observers in the signed tilt domain t ¼ 0
�
; 360

�½ Þ. The dashed line

represents the uniform distribution of tested stimuli. (A) Human responses to natural stimuli. The distribution p t̂ð Þ peaks at cardinal angles, but the peak

at 270˚ is significantly lower than the peak at 90˚, similar to the distribution of tilts in natural scenes p tð Þ computed directly from the database. (B)

Human responses to artificial stimuli are more similar to the distribution of tested tilts. (C) Prior probability distribution of groundtruth tilts, computed

directly from the natural scene database, in the signed tilt domain.
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Figure 2—figure supplement 5. Tilt estimation performance with full-field (36˚ x 21˚) viewing of natural stimuli. Estimates were obtained for half the

natural stimuli in the main experiment (1800 trials) from two of the three human observers. The experimental design was otherwise the same as the

original experiment. (A) Raw responses. (B) Count ratio of estimates for full-field viewing (red) and the data from the main experiment (white). (C) Mean

estimates as a function of groundtruth tilt. (D) Estimate variance as a function of groundtruth tilt. (E) Distribution of estimation errors for different

groundtruth tilts. (F) Distribution of groundtruth tilt for different tilt estimates.
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Figure 4—figure supplement 1. Alternative visualization of data in Figures 3 and 4. Top row: Natural stimuli. Bottom row: Artificial stimuli. (A)

Conditional probability p t̂jtð Þ of estimated tilts given groundtruth tilt in the unsigned tilt domain: t ¼[0, 180˚). Each column of each subplot represents

the conditional probability distribution of estimates for a different groundtruth tilt. Hence, each column represents the data in each subplot of

Figure 3. (B) Conditional probability p tjt̂ð Þ of groundtruth tilts given estimated tilt. Each row of each subplot represents the conditional probability

distribution of groundtruth tilts for a different estimate. Hence, each row represents the data in each subplot of Figure 4. (C,D) Same as (A,B) but in the

signed tilt domain: t ¼[0˚, 360˚). For visualization, each conditional probability distribution is normalized so that the maximum probability equals 1.0

(colorbar). The distributions of tilt estimates from natural and artificial stimuli conditional on groundtruth tilts are very different (A,C). By contrast, the

distributions of groundtruth tilts conditional on estimates from natural and artificial stimuli are very similar (B,D). Thus, regardless of the stimulus type,

the information provided about groundtruth by human tilt estimates is of similar quality. This property of the estimates should simplify subsequent

processing that combines local into more global estimates (see main text).
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Figure 5—figure supplement 1. Unsigned tilt estimates: human observers and normative model. Each panel shows the unsigned tilt estimate of a

human or model observer plotted against the groundtruth tilt of every stimulus presented in the experiment.
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Figure 6—figure supplement 1. Trial-by-trial estimation errors between humans. The diagonal structure in the

plots indicates that trial-by-trial errors are correlated. (A) Raw trial-by-trial errors with natural stimuli between

humans. (B) Correlation coefficients (circular) for trial-by-trial errors between humans. The error bars represent 95%

confidence intervals from 1000 bootstrapped samples of the correlation coefficient. (C) Bias-corrected errors in

natural stimuli. (D) Correlation coefficient for bias-corrected errors.
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Figure 6—figure supplement 2. Six alternative models for predicting human tilt estimation performance. Each model sets its estimates equal to (i) the

minimum mean squared error (MMSE) estimates based on three cues (i.e., the normative model used in the main text); (ii–iv) the MMSE estimates

based on each single cue alone (Luminance; Texture; and Disparity); (v) random tilt samples from the tilt prior (Prior); and (vi) random tilt samples from a

uniform distribution of tilts (Random) (A) Human trial-by-trial errors plotted against the errors made by each of the models. Upper rows show raw errors;

lower rows show bias-corrected errors. (B) Circular correlation coefficient for each of the models considered in (A). (C) Choice probability for each of the

models considered in (A). Here, we define choice probability as the proportion of trials in which the sign of the model error predicts the sign of the

human errors. The pattern is similar to that of the circular correlation coefficient. The MMSE model based on three image cues predicts humans tilt

estimation errors better than all other models. In addition to the six models shown here, we assessed a number of ad hoc models. Three single-cue

models that set the tilt estimate equal to each of the single cue values (i.e., cue-gradient orientation) predict human performance more poorly than the

three-cue normative model used in the main text, but better than the prior or the random model. A model that averages the single-cue values (with

equal weights) predicts human estimation better than the single-cue MMSE estimators, but worse than the three-cue normative model used in the main

text.
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Figure 8—figure supplement 1. Tilt estimation performance with near-planar natural stimuli . We analyzed performance for the subset of natural

stimuli with the lowest tilt variance (tilt variance�0.2; bottom 25%). For these near-planar stimuli, the mean tilt estimation error is 16.9˚, slightly lower
than the mean error with artificial stimuli (18.1˚; see Figure 7C). (A) Raw responses. (B) Histogram of estimates. The dashed curve shows the distribution

of groundtruth tilts in this subset of stimuli, which is not uniform. Unlike with planar artificial stimuli (c.f., Figure 2D), the histogram of human responses

to near-planar natural stimuli over-represents the cardinal tilts relative to the frequency of the presented stimuli. The normative model nicely predicts

the histogram of human estimates (solid curve). (C) Mean estimates as a function of groundtruth tilt. (D) Estimate variance as a function of groundtruth

tilt. The mean and variance functions are different from the mean and variance functions yielded by planar artificial stimuli. Thus, tilt variance is not

solely responsible for the differences between performance with natural and artificial stimuli. (E) Tilt estimation errors for different groundtruth tilts.

Errors with near-planar natural stimuli (gray symbols) are substantially different than estimation errors with planar artificial stimuli (black symbols). The

error distributions shown here are noisier than the plots in Figure 3, because there are comparatively fewer stimuli with low tilt variance. Still, the model

(gray curves) does a reasonable job at predicting the distributions. Indeed, for near-planar natural stimuli, all three humans observers show significant

trial-by-trial raw error correlations with the model, and two of three observers show significant trial-by-trial bias-corrected error correlations with the

model.
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Figure 9—figure supplement 1. Tilt estimation performance of the normative model with natural stimuli for five tilt variance quintiles. The quintile

centers are at 0.12, 0.33, 0.55, 0.76, and 0.97, respectively. (A) Estimate count ratio (i.e., the ratio of estimated to presented tilts) at each tilt. (B) Estimate

means. (C) Estimate variances. The patterns of estimate counts, estimate means, and estimates variances are robust to tilt variance except at the very

highest tilt variances.
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