
 

Feature-specific divisive normalization improves 
natural image encoding for depth perception	

Long Ni1, Johannes Burge1,2,3 
 

1Department of Psychology, University of Pennsylvania, Pennsylvania PA; 
2Neuroscience Graduate Group, University of Pennsylvania, Pennsylvania PA; 
3Bioengineering Graduate Group, University of Pennsylvania, Pennsylvania PA 

Abstract 
Vision science and visual neuroscience seek to understand how stimulus and sensor 
properties limit the precision with which behaviorally-relevant latent variables are encoded 
and decoded. In the primate visual system, binocular disparity—the canonical cue for 
stereo-depth perception—is initially encoded by a set of binocular receptive fields with a 
range of spatial frequency preferences. Here, with a stereo-image database having 
ground-truth disparity information at each pixel, we examine how response normalization 
and receptive field properties determine the fidelity with which binocular disparity is 
encoded in natural scenes. We quantify encoding fidelity by computing the Fisher 
information carried by the normalized receptive field responses. Several findings emerge 
from an analysis of the receptive field response statistics. First, broadband (or feature-
unspecific) normalization yields Laplace-distributed receptive field responses, and 
narrowband (or feature-specific) normalization yields Gaussian-distributed receptive field 
responses. Second, the Fisher information in narrowband-normalized responses is larger 
than in broadband-normalized responses by a scale factor that grows with population 
size. Third, the most useful spatial frequency decreases with stimulus size and the range 
of spatial frequencies that is useful for encoding a given disparity decreases with disparity 
magnitude, consistent with neurophysiological findings. Fourth, the predicted patterns of 
psychophysical performance, and absolute detection threshold, match human 
performance with natural and artificial stimuli. The current computational efforts establish 
a new functional role for response normalization, and bring us closer to understanding 
the principles that should govern the design of neural systems that support perception in 
natural scenes. 
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Introduction 
Understanding how perceptual systems respond to natural signals is a topic of enduring 
interest in vision and neuroscience research. Although the topic has been recognized as 
having fundamental importance since the advent of modern vision science, only in the 
past twenty years have the experimental and computational tools matured sufficiently so 
that substantial progress can be made (Simoncelli & Olshausen 2001; Geisler, 2008; 
Geisler & Ringach, 2009; Burge, 2020). Progress has been achieved using multiple 
methods, ranging from direct neurophysiological measurement to computational 
modeling. Characterizing how receptive fields are driven by natural images is important 
to this effort. Knowledge of how responses are altered by different receptive field 
properties, and other aspects of sensory processing, is critical for understanding designs 
of neural systems that maximize performance (Geisler, 1989; Olshausen & Field, 1996; 
Burge, 2020). Quantifying the statistical properties of receptive field response to natural 
signals can help place data-constrained, image-computable models of visual information 
processing on firm, ecologically-valid foundations. 
	

A primary function of our visual system is to estimate and categorize behaviorally relevant 
latent variables from images of the natural environment. To do so, image features that 
carry information about those latent variables must be extracted from the retinal images. 
Determining the image features that receptive fields should select for, and how the 
extracted features should be combined, are difficult problems.  
 

The premise of this article is that an examination of the statistical properties of receptive 
field responses to natural stimuli that signal different values of behaviorally-relevant latent 
variables will help one gain a deeper understanding of principles underlying the 
computations that neural systems perform, and of the limits of perceptual performance. 
The computations that support the optimal computations—e.g., optimal combination of 
the receptive field responses—are dictated by the statistical relationship between the 
features selected for by useful receptive fields and the latent variable(s) of interest. 
Measuring how natural stimulus variability—an ecologically valid form of ‘nuisance’ 
variability—and how aspects of the response model shape the statistics of receptive field 
response is an obvious starting place. 
  

Here, using stereo-depth perception as a model system, we report an extensive 
computational analysis of how binocular receptive fields are driven by natural stereo-
images. The analyses are focused on understanding i) how properties of the response 
model impact the response statistics, and ii) how those statistics should constrain and 
shape performance in stereo- (i.e. binocular-disparity-based-) depth perception tasks.  
	

The article is organized as follows. First, we examine how binocular receptive fields 
respond to natural stereo-images. We quantify how different forms of response 
normalization—broadband (feature-unspecific) and narrowband (feature-specific) 
normalization—alter the amount of Fisher information about disparity in the responses. 
Second, we examine how responses are modulated by fixation disparity, and how well 
fixation disparity can be discriminated from the responses of individual receptive fields 
with different spatial frequency preferences. Finally, we analyze how pairs and 
populations of responses are modulated by fixation disparity, and use these response 
statistics to predict patterns of human disparity-discrimination performance with natural 
stereo-images.  
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To preview the major results, we find that the form of normalization and the spatial 
frequency selectivity of the receptive fields strongly impacts the amount of Fisher 
information about the latent variable in their responses: coding fidelity is higher with 
narrowband (feature-specific) than with broadband (feature-unspecific) normalization. We 
find that this functional advantage increases systematically as receptive field population 
size increases. And we find that distinctive patterns of psychophysical performance are 
predicted by the statistics of response to natural images.  
 

Results 
The analyses described in this section are focused on understanding how canonically-
shaped binocular receptive fields respond to natural stereo-images, and how the 
response properties shape and constrain performance in stereo-depth perception. First, 
we describe the natural stereo-image dataset and the binocular receptive field response 
model on which the analyses are based. Next, we present response statistics, encoding 
fidelity, and discrimination performance based on responses of individual receptive fields 
with different spatial frequency preferences, pairs of receptive fields, and an entire 
receptive field population. Throughout, specific emphasis is placed on how the form of 
response normalization changes coding fidelity with receptive field population size. 
Although the results described here are specific to stereo-depth perception, there is 
evidence that the principles described here should be general to a range of other sensory-
perceptual tasks—for example, focus error (Burge & Geisler, 2011; 2012), 2D motion 
(Burge & Geisler, 2015; Chin & Burge, 2020), and 3D motion estimation (Herrera & Burge, 
2024).  
	

Natural-stereo images  
Stereo-image patches of natural scenes were sampled from a dataset of stereo-images 
with co-registered laser-based distance measurements at each pixel (Burge, McCann, 
and Geisler 2016). Corresponding left- and right-eye-image points, and ground-truth 
relative disparities, were computed directly from the distance data assuming a virtual 
human observer with a 65mm interpupillary distance (Iyer & Burge, 2018; Fig. 1a).  
 

Sampled stereo-image patches were centered on surface points in the scene 
(corresponding image points), offset by a fixation disparity that ranged from -30 to 30 
arcmin (Fig. 1b). The local differences between the left- and right-eye patches defining 
each stereo-pair are due to two distinct factors: i) the imposed fixation disparity, and ii) 
the local depth structure of the surface(s) in the depicted scenes. Fixation disparity 
determines the overall leftward or rightward shift of the two images relative to one another. 
Local depth structure—which we quantify with disparity contrast (see Methods)—
determines the local differences in the two images. For a flat frontoparallel surface straight 
ahead, for example, the left- and right-eye images are identical to one another except for 
a spatial shift. For a surface with a great deal of local depth variation, the left- and right-
eye images will have many local differences between them (Fig. 1c). In this article, we 
analyze only approximately flat surfaces (i.e. surfaces with near-zero disparity contrast; 
see Methods). We do so because flat surfaces support the most precise disparity-based 
depth discriminations, and because research in the psychophysics and neuroscience 
literatures has typically been performed using flat surfaces. Future work will examine 
response statistics and estimation and discrimination performance associated with 
surfaces that are not flat. 
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Figure 1: Fixation disparity and nuisance variability in natural stereo-images. (a) Natural stereo-
image. Divergently-fuse the left two images, or cross-fuse the right two images to see the scene 
in stereo-3D. Corresponding points, which are computed from co-registered laser-based distance 
measurements at each pixel, are overlayed (yellow dots). Yellow boxes indicate example stereo-
image patches (4/3ºx4/3º patches were analyzed in the paper; 2.5x2.5º patches are shown here 
for purposes of visualization). (b) For each local surface in the scene, left- and right-eye stereo-
image patches were sampled with a fixation disparity ( 𝛿! = 𝜃" − 𝜃# )—roughly, how far a target 
surface point is from fixation (Howard & Rogers, 2002). Stereo-image patches were sampled from 
all scene locations. Some patches depicted scene regions with low local depth variability (left); 
others depicted regions with much more local depth variability (right). This article focuses its 
analysis on images depicting scene regions where local depth variability is low (< 2 arcmin), rather 
than high (grayed out). (c) Example stereo-image patches from the yellow boxes in (a). One patch 
has low local depth variability (and low disparity contrast). The other has high local depth 
variability (and high disparity contrast). This article focuses its analysis on stereo-images of flat 
(i.e. low disparity-contrast) surfaces.  

Stereo-depth estimation is a difficult problem in part because of the many factors that 
inject random variation into binocular stereo-images. Luminance contrast-pattern 
variation--which is caused by differences in surface materials, textures, and lighting 
among other factors--is one source of nuisance variability that the nervous system must 
contend with. Local depth variation--which is due to the 3D structure of the surfaces 
composing scenes--is another (see Fig. 1bc). The distinct impact of these two sources of 
variability will be examined in future work (see Discussion). 

Biological image systems must estimate the amount of fixation disparity at each point in 
a scene by determining how well local patches of the left- and right-eye images match 
one another. The consensus view is that this correspondence problem is solved with 
computations akin to a cross-correlation (Tyler & Julesz, 1978). In the nervous system, 
these computations depend on appropriate processing of receptive field responses to the 
left- and right-eye images (Fleet, Wagner, Heeger, 1996; Qian & Zhu, 1997; Anzai, 
Ohzawa, Freeman, 1999; Banks, Gepshtein, Landy, 2004; Burge & Geisler, 2014).  
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Response Model 
The impact of internal noise on perceptual performance has been studied intensively for 
decades. The manner in which natural nuisance variability impacts performance is less 
well understood (but see Hecht, Shlaer, Pirenne, 1942; Geisler, 1989; Burge & Geisler, 
2015; Sebastian et al., 2017; Burge, 2020). Here, we study its impact using the classic 
computational framework of the linear-nonlinear subunit model.  
 

Binocular receptive fields have left- and right-eye components. Each component is 
commonly modeled as having a Gabor-shaped weighting profile—a sinewave multiplied 
by a Gaussian—with a phase difference between the carrier wave of each component. 
Such receptive fields are said to select for phase disparity. It is also common to model 
the components as having the same Gabor-shaped weighting profile in offset positions 
from one another. Such receptive fields are said to select for position disparity. Both types 
occur in cortex (Cumming & DeAngelis, 2001), but evidence suggests that phase-
disparity-selective receptive fields code for a broader range of disparities in primate and 
in cat (Prince, Cumming, Parker, 2002; Anzai, Ohzawa, Freeman, 1999). Although our 
analysis focuses on phase-disparity-selective receptive fields, all results are robust when 
position-disparity-selective receptive fields are included in the analysis, provided that the 
range of disparities coded by position-disparity-selective receptive fields is bounded, as 
it is in cortex.  
 

We examine the response properties of receptive fields with spatial frequency 
preferences that range from 1-8 cycles per degree (Fig. 2ab; see Methods). The octave 
bandwidth of the receptive field component in each eye was 1.2 octaves and the 
orientation bandwidth was 42º, values that approximately match the median values 
recorded from simple cells in early visual cortex (De Valois, Albrecht, Thorell, 1982; 
Ringach, 2002). (All qualitative results are robust to biologically-realistic variation around 
these numbers, see Iyer & Burge, 2019.) At each spatial frequency, we consider the 
responses of a pair of receptive fields in quadrature (Adelson & Bergen, 1985). 
Quadrature receptive fields are orthogonal to one another (i.e. 𝐟!"𝐟# = 0) and select for the 
same region of the spatial frequency spectrum (i.e. have the same amplitude spectra). 
Receptive field pairs in quadrature phase extract all information in the region of the spatial 
frequency spectrum that the receptive fields select for.  
 

Neural responses of simple cells in primate early visual cortex are often modeled as 
arising from a set of processes: receptive-field-based filtering, divisive normalization, the 
addition of noise, and an output non-linearity which converts a response rate into spikes 
(Fig. 2c; Goris et al., 2024; Heeger, 1992; Albrecht & Geisler, 1991). Models of complex 
cell responses are more involved; before the output non-linearity, the responses of 
multiple receptive fields are quadratically combined (Fig. 2d).  
 

Here, we analyze the distribution of normalized receptive field responses (i.e., response 
drives) rather than the noisy spiking responses of the neuron (see Fig. 2c), focusing on 
how the distribution of these responses 𝑝(𝐑|𝛿) across many natural images with the 
same fixation disparity is affected by the form of normalization and by the spatial 
frequency preferences of the receptive fields. As will soon become clear, these response 
statistics entail that the normalized responses should be quadratically combined, 
consistent with standard descriptive models of complex cells (Fig. 2d). 
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Figure 2. (a) Binocular receptive fields with preferred spatial frequencies of 1, 2, 4, and 8cpd. The 
left- and right-eye components of each binocular receptive field are phase shifted with respect to 
each other by 90º (-45º and +45º, or vice versa). (b) Receptive field profiles obtained by taking a 
horizontal slice through each of a binocular receptive field. As can be seen in (a), receptive fields 
(and profiles) are identical up to a spatial scale factor. (c) Binocular receptive fields are assumed 
to respond according to the following response model. The response is driven by a projection of 
the stimulus onto the receptive field modulated by (feature-specific) divisive normalization. (Note 
that normalizing the response after projecting the stimulus onto the receptive field, and 
normalizing the stimulus before projection onto the receptive field, yield computationally 
equivalent responses.) Finally, an output non-linearity, and a stochastic process that accounts for 
internal noise (not pictured), transform the normalized response field response into neural 
response. (d) Complex binocular neurons are modeled by the quadratic combination of responses 
from multiple differently-sized binocular receptive fields with different spatial frequency and phase 
preferences. Note that smaller receptive fields process a smaller region of the image. The current 
paper focuses its analysis on the statistics of the normalized receptive field responses—
specifically, on the conditional probability of response 𝑝(𝐑|𝛿) to natural stereo-image patches 
sharing the same fixation disparity. When the quadratic weights 𝐐 are appropriately chosen (see 
below), the neural response of the complex cell reports the likelihood that a stimulus with a 
particular disparity elicited the receptive field responses. 
  
Narrowband vs. broadband normalization 
Effects on response statistics 
To examine how the responses of individual binocular receptive fields are driven by 
natural stimuli, we begin with stereo-images having zero fixation disparity, a viewing 
situation that arises when the eyes perfectly fixate a point on the surface of an object (see 
Fig. 1b). Then, we examine how the response statistics vary with fixation disparity and 
how well each receptive field by itself supports disparity discrimination. 	
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Figure 3: Binocular receptive field response statistics with broadband and narrowband 
normalization. (a) Distributions of broadband- and narrowband-normalized responses to natural 
stereo-images having a fixation disparity of 0 arcmin. The broadband- and narrowband-
normalized responses are approximately Laplace and Gaussian distributed, respectively. (b) 
Same responses as in (a), but with log-probability transformed y-axis. (c) Response standard 
deviation (left) and response kurtosis (right) as a function of the receptive field’s preferred spatial 
frequency (see Fig. 2) for narrowband and broadband normalization (colors). Gaussian-
distributed responses have a kurtosis of 3.0. Laplace-distributed responses have a kurtosis of 
6.0. (d) Histogram of response kurtosis across all preferred spatial frequencies and fixation 
disparities. 
 
The statistical properties of the responses to natural stereo-images depend heavily on 
the form of normalization. We consider two types of normalization: broadband 
normalization and narrowband normalization (Iyer & Burge, 2019). Broadband 
normalization is stimulus-specific, but feature-independent. It normalizes the receptive 
field response to each stimulus by all the stimulus contrast in the location of the receptive 
field; that is, every spatial frequency and orientation in the stimulus contributes equally to 
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the normalization factor. Narrowband normalization is stimulus-specific and feature-
dependent. It normalizes receptive field response by the stimulus contrast in the spatial 
frequency and orientation passband at the location of the receptive field. With narrowband 
normalization, stimulus features that are more similar to the preferred feature contribute 
more to the normalization factor. 

 
Figure 4: (a) Standard deviation of narrowband- and broadband-normalized responses (black 
and green, respectively) as a function of fixation disparity for individual receptive fields with 
different spatial frequency preferences (columns). (b) Corresponding Fisher information for each 
individual receptive field. Fisher information is consistently higher for narrowband- than for 
broadband-normalized responses.  
 
The broadband-normalized responses of each individual binocular receptive field are 
approximately mean-zero Laplace-distributed (i.e., heavy-tailed); each response 
distribution has a small standard deviation and a kurtosis of approximately 6.0. By 
contrast, the narrowband-normalized responses are approximately mean-zero Gaussian-
distributed; each response distribution has a larger standard deviation and a kurtosis of 
approximately 3.0 (Fig. 3ab). For both forms of normalization, these statistics are largely 
invariant to the preferred spatial frequency of the receptive field (Fig. 3c; also see Jaini & 
Burge, 2017 and Iyer & Burge, 2019). The kurtoses of the narrowband-normalized 
response distributions are also largely invariant to fixation disparity (Fig. 3d). The 
standard deviation of responses from each receptive field, however, varies periodically 
with fixation disparity, at a rate that depends on the preferred spatial frequency of the 
receptive fields (Fig. 4a). 
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Narrowband vs. broadband normalization 
Effects on encoding fidelity  
To determine how well a latent variable—here, fixation disparity—can be discriminated 
from the responses of individual receptive fields, we compute Fisher information. Fisher 
information specifies the amount of information about a latent variable contained in a 
random variable—here, the receptive-field responses. Fisher information is equivalently 
given by the following two expressions 

𝐽(𝛿) = 		𝐸$ -.
%
%&
ln𝐿(𝛿; 𝑅)4

'
5  (1a) 

								= −𝐸$ -7
%!

%&!
ln𝐿(𝛿; 𝑅)85, (1b) 

where 𝛿 is the fixation disparity, 𝑅 is the receptive field response, and ln𝐿(𝛿; 𝑅) is the log-
likelihood function over disparity, which can be computed by evaluating an observed 
response in the log of each response distribution 𝑝(𝑅|𝛿). When the response distributions 
are mean-zero Gaussian, the response distributions are given by 𝑝(𝑅|𝛿) = (

)
exp <− (

'
$!

*(&)
=, 

where 𝑣(𝛿) is the response variance at a particular disparity and 𝑍 is a constant. The log-
likelihood that an observed response was elicited by a stimulus having a particular 
disparity is thus given by  ln𝐿(𝛿; 𝑅) = − (

'*(&)
𝑅' + 𝐾, where 𝐾 = −ln𝑍 is a constant. 

Eq. 1a is the expected value of the squared derivative of the log-likelihood function, and 
Eq. 1b is the negative expected curvature of the log-likelihood function, at each fixation 
disparity. (Note that Eq. 1b holds only when the log-likelihood function is twice 
differentiable; Eq. 1a holds regardless.) In general, higher Fisher information implies 
lower discrimination thresholds (see below).  

The Fisher information depends on the distributional form of the random variable, and on 
how the parameters of the distribution change with the latent variable. When the observed 
random variable is zero-mean Gaussian-distributed, as the narrowband-normalized 
responses tend to be at each disparity, Fisher information is given by 

𝐽-(𝛿) =
(
'
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"(&)
*(&)

C
'
,																									(2)	

where	𝑣(𝛿) is the variance of the receptive field response at each disparity, and 𝑣.(𝛿) is 
the corresponding derivative with respect to disparity (see Supplement for derivation). 
When the observed random variable is zero-mean Laplace-distributed—as is the case 
with broadband normalized responses—the Fisher information is given by  

𝐽/(𝛿) = B0.(&)
0(&)

C
'
= (

1
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*(&)

C
'
,     (3) 

where	𝜎(𝛿) is the standard deviation of the receptive field response at each disparity, and 
𝜎.(𝛿)  is the corresponding derivative with respect to disparity (see Supplement for 
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derivation). The Fisher information can be equivalently expressed in terms of 𝑣(𝛿) the 
response variance at each disparity, and 𝑣.(𝛿) its corresponding derivative.  

Clearly, the Fisher information in Gaussian-distributed responses is two times larger than 
that in the Laplace-distributed responses (see Eqs. 2 and 3), provided that the standard 
deviation (or variance) functions are the same, or are scale multiples of one another, as 
they approximately are here (see Fig. 4a). Narrowband-normalized responses thus 
contain more Fisher information than broadband-normalized responses, in each 
individual receptive field (Fig. 4b). So narrowband-normalization increases the fidelity with 
which fixation disparity is encoded. However, individual binocular receptive fields in 
isolation encode disparity rather poorly. Responses from pairs of binocular receptive 
fields contain substantially more Fisher information about fixation disparity, supporting 
better discrimination performance. Next, we analyze the response statistics of receptive 
field pairs, derive expressions for the Fisher information in responses from receptive field 
pairs and populations, and demonstrate that the benefit of narrowband normalization 
increases systematically with population size.    

Normalized responses from receptive-field pairs  
Statistics and Fisher information 
The joint narrowband-normalized responses 𝑝(𝑹|𝛿) = 𝑁(𝑅; 𝟎, 𝐂&)  to a collection of 
natural stereo-images having the same disparity are well-approximated as mean-zero 
multivariate Gaussian distributions (Fig. 5a). These response distributions are formally 
described by 𝑝(𝑹|𝛿) = (

)
exp <− (

'
J𝐑2𝐂&3(𝐑K= where 𝐂&3( is the inverse covariance matrix 

associated with stereo-images having a particular disparity and 𝑍 is a constant that does 
not depend on the response. The log-likelihood that a stereo-image with a particular 
disparity elicited an observed population response is therefore given by 

ln	𝐿(𝛿; 𝐑) = ln	𝑝(𝐑|𝛿) = − (
'
[𝐑"𝐂&3(𝐑] + 𝐾, (4) 

where 𝐾 = −ln(𝑍) is an additive constant. Computing the log-likelihood (and likelihood) 
therefore requires quadratic combination of the receptive field responses. When the 
weights for quadratic combination are set equal to the inverse covariance matrix (i.e. 𝐐 =
𝐂&3(; see Fig. 2d), a neuron carrying out those computations would report the likelihood of 
that disparity. Neurons that carried out such computations would be perfectly suited for 
implementing circuits for carrying out maximum likelihood—or Bayes-optimal—estimation 
(Burge & Geisler, 2014; Burge, 2020). 
 
The covariances of the response distributions clearly depend on both the fixation disparity 
and the spatial frequency preferred by the corresponding pair of receptive fields (Fig. 5). 
The manner in which the response covariances change with disparity suggests that pairs 
and populations of receptive fields should provide far more information about fixation 
disparity than individual receptive fields do (see below). 
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Figure 5. Joint receptive field response distributions. (a) Narrowband-normalized response 
distributions for the receptive field pairs defining each spatial frequency channel to a collection of 
images having different disparities (colors) Each point represents the response to a single stereo 
image. b) Schematic showing how changes in aspect ratio and in orientation of the response 
distributions for stimuli having uncrossed (blue), zero (black), and crossed (red) disparity, 
respectively. The black dot represents a joint response to a particular natural stereo-image patch 
associated with fixation disparity of 0 arcmin. (c) Aspect ratio and (d) rotation of each bi-variant 
normal distribution or “ellipse” shown in a as a function of fixation disparity. The rotation of an 
ellipse is defined as the difference between the orientation of its major axis and that of the ellipse 
associated with fixation disparity of 0 arcmin. The rotation of the ellipse associated with disparity 
of 0 arcmin is thus set to 0º. 	

The covariance of each distribution can be characterized with the aspect ratio and 
orientation of each bi-variant joint distribution or ellipse (Fig. 5ab). This characterization 
is useful for examining how the distributions change with fixation disparity. (Note that the 
length of the principle axis of each ellipse, which corresponds to the principle eigenvalue, 
is essentially invariant to disparity, so aspect ratio and orientation fully capture the 
changes.) Increases in fixation disparity from zero cause the aspect ratios to approach 
1.0 (i.e. cause the distributions to be more nearly circular; Fig. 5ac). Increasing the 
preferred spatial frequency (i.e. size) of the receptive fields causes the aspect ratios and 
the orientations to rotate more rapidly with fixation disparity (see Fig. 5cd).  

0
0.2
0.4
0.6
0.8

1

As
pe

ct
 R

at
iocb

-180

-90

0

90

180

R
ot

at
io

n 
(d

eg
)

Fixation disparity (arcmin)
-30 -15 0 15 30

1cpd
2cpd
4cpd
8cpd

a

increasing aspect ratios improves discriminability 

increasing rotations improves discriminability 

d

1cpd 2cpd 4cpd 8cpd

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.05.611536doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611536
http://creativecommons.org/licenses/by-nc-nd/4.0/


Visual inspection of the response distributions suggests that different spatial frequencies 
should differentially support discrimination performance at varying fixation disparities; 
responses from distributions that overlap less are less confusable (Fig. 5). The Fisher 
information in the joint response distributions quantifies how this distributional overlap is 
related to discrimination thresholds. For responses from pairs (or populations) of 
receptive fields that are jointly distributed as zero-mean Gaussians, Fisher information is 
given by 

𝐽$(𝛿) =
1
2𝑇𝑟 .𝐂′𝐂

−1𝐂′𝐂−1/,  (5) 

where 𝑇𝑟(. ) is the trace operator and 𝐂 is the covariance matrix (see Supplement for 
derivation; Mardia & Marshall, 1984). (In Eq. 5, the dependence of 𝐂 on fixation disparity 
has been dropped for notational simplicity.) Because of how the response covariance 
changes with fixation disparity, there is a massive increase in Fisher information that a 
pair of receptive field responses provides over those provided by individual receptive 
fields in isolation (Fig. 6a). This finding confirms that pairs of binocular receptive fields 
should dramatically improve the encoding of disparity from natural stereo-images. 

The Fisher information in mean-zero multivariate Laplace-distributed responses is given, 
to close approximation, by 

𝐽%(𝛿) ≅
&

'&(!")
1&
*
𝑇𝑟 .𝐂′𝐂−1𝐂′𝐂−1/2, (6) 

where 𝑛 is the number of dimensions (see Supplement for derivation). For a receptive 
field pair (i.e. 𝑛=2) the equation implies that there is 2x less Fisher information in bivariate 
broadband-normalized (Laplace-distributed) responses than in narrowband-normalized 
(Gaussian-distributed) responses (Fig. 6b), provided that the covariances are equal up to 
a scale factor, as they approximately are here (see Fig. 4a). 

Eqs. 5 and 6 further imply that narrowband normalization provides an increasingly large 
advantage over broadband normalization as the number of receptive fields (dimensions) 
supporting discrimination increases; the Fisher information is B1 + 8

'
	C times larger. Given 

that complex cells in cortex, including disparity-selective cells, tend to be driven by many 
more than two (i.e. ten or more) subunit receptive fields (Fig. 2d) (Rust et al., 2005; 
Tanabe, Haefner, Cumming, 2011), the functional coding advantage afforded by 
narrowband over broadband normalization in neural systems should be substantial.  
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Figure 6. Functional population coding benefits afforded by narrowband normalization. (a) Fisher 
information in the joint narrowband-and broadband-normalized responses of each receptive field 
pair. Narrowband-normalized responses from each pair contain two times more Fisher information 
(see Eqs. 5 and 6). For reference, the Fisher information in the narrowband-normalized responses 
of each individual receptive field is also shown (replotted from Fig. 4b). Note the dramatic increase 
in information in the joint responses. (b) Disparity discrimination thresholds that are implied by 
the Fisher information in the joint responses. (c) Optimal spatial frequency as a function of fixation 
disparity. For each disparity, the optimal spatial frequency is the frequency preferred by the 
receptive field pair that gives rise to the highest encoding fidelity (i.e. Fisher information). (d) 
Fisher information in narrowband- and broadband--normalized responses in all four receptive field 
pairs (see Methods). (e) Corresponding disparity discrimination thresholds that are implied by the 
Fisher information. 
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The reciprocal of Fisher information gives the Cramer-Rao lower bound on the variance 
of an unbiased estimator, which directly predicts the discrimination thresholds that can be 
measured in a psychophysical experiment. However, unbiased estimators are not always 
realizable and estimators are often biased. Fortunately, it can be shown that Fisher 
information specifies the smallest possible discrimination thresholds via an expression 
that is invariant to whether the estimator is biased or not (see Supplement). Specifically,  

𝑇(𝛿) ≥ 9#$%&
"

:;(&)
,  (7) 

where 𝑇(𝛿) is the discrimination threshold as a function of fixation disparity, and 𝑑<=!>.  is 
the criterion d-prime. (For simplicity, but without loss of generality, we assume that the 
criterion d-prime is 1.0, corresponding to 76% correct threshold in a two-interval two-
alternative forced choice task.) Discrimination thresholds implied by the Fisher 
information (see Eq. 7) in responses of receptive field pairs are square-root-of-two times 
smaller for the (Gaussian-distributed) narrowband-normalized responses than for the 
(Laplace-distributed) broad-band responses (Fig. 6b).  

Moreover, we note several findings that are invariant to the type of normalization. First, 
small fixation disparities are encoded with greater fidelity than large disparities, a result 
that does not depend on the preferred spatial frequency of the binocular receptive fields. 
Second, binocular receptive fields preferring lower spatial frequencies code disparities 
over a larger range than those preferring higher spatial frequencies. Third, binocular 
receptive fields that prefer higher spatial frequencies are better at encoding small 
disparities, and those that prefer low spatial frequencies are better at encoding large 
disparities (Fig.6c). All of these findings have analogs in the psychophysics and 
neurophysiology literatures (Blakemore, 1970; DeAngelis & Cumming, 2001; McKee, 
Levi, Bowne, 1990; Prince et al., 2002; Schor & Wood, 1983; Siderov & Harwerth, 1993; 
Smallman & MacLeod, 1994; see Discussion).  

Population coding 
Perceptual systems should use all relevant information to perform critical tasks. Thus, the 
information provided by all receptive fields in a population, spanning various spatial 
frequency preferences, should be used in concert. To examine how encoding fidelity 
improves when the population response is used, we compute the Fisher information from 
the normalized responses receptive field pairs that fully tile the 1-8cpd range with different 
densities. Encoding fidelity improves—Fisher information increases (Fig. 7a), and 
discrimination thresholds decrease commensurately (Fig. 6de and Fig. 7b)—for all 
fixation disparities, as compared with any spatial frequency channel in isolation. The 
improvement in encoding fidelity and discrimination performance increases monotonically 
with the number of receptive fields involved (Fig. 7cd).  

The lowest disparity discrimination threshold (i.e. the disparity detection threshold) is a 
fraction of an arcmin, and discrimination thresholds rise exponentially with fixation 
disparity from the detection threshold (see Burge & Geisler, 2014). These computational 
results, and others, are in close alignment with classic findings in the psychophysical 
literature (see Discussion).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.05.611536doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611536
http://creativecommons.org/licenses/by-nc-nd/4.0/


The fact that Fisher information increases, and discrimination thresholds decrease when 
receptive field responses are appropriately combined across spatial frequency channels 
is expected: each channel is useful, so combining useful information should improve 
performance. However, the statistical approach used here reveals at least one non-
obvious benefit: the presence of multiple channels allows the system to adaptively adjust 
to the variable usefulness of each channel for individual stimuli, not just on average. That 
is, for a given stimulus, when one channel provides little or no useful information about 
fixation disparity, other channels can compensate, ensuring reliable performance across 
different conditions. 

	
Figure 7. Functional benefits of population coding. (a) Depiction of the density with which different 
numbers of spatial frequency (SF) channels (4, 7, or 13) tile the spatial frequency range 1-8cpd. 
(b) Fisher information in narrowband-normalized responses for receptive field populations 
associated with different numbers of channels as a function of fixation disparity. Each curve shows 
Fisher information for a different number of receptive field pairs tiling the 1-8cpd spatial frequency 
range (colors). Note the diminishing returns as the density of tiling increases. (c) Disparity 
discrimination thresholds that are implied by the Fisher information in (b). (d) Fisher information 
and (e) discrimination (i.e. detection) thresholds at fixation disparity of 0 arcmin as a function of 
the number of spatial frequency channels.  
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Consider stimuli that elicit receptive field responses in the confusion zone of a low spatial-
frequency channel, where the response magnitude 3𝑹#3 nearly equals zero (Fig. 8a, 
1cpd). The disparity associated with those stimuli will be hard to discriminate because of 
the heavy overlap of the response distributions near zero. Those same stimuli, however, 
will elicit differential responses in the next higher spatial-frequency channel. While some 
of these new responses will still fall in the confusion zone of the new channel, others will 
be large and outside the confusion zone, thereby enhancing discrimination performance 
(Fig. 8a, 2cpd). In the next frequency channel, some stimuli that produce responses in 
the confusion zones of the first two channels will generate large responses in the third 
channel, enabling good performance on the basis of the third channel (Fig. 8a, 4cpd), and 
so on (Fig. 8a, 8cpd). The same principle can hold in the other direction (Fig. 8b).  

 
Figure 8: Joint response distributions of binocular receptive field pairs having preferred spatial 
frequencies of 1, 2, 4, and 8 cyc/deg to natural stereo-images with uncrossed (blue), zero (black), and 
crossed (red) disparity. When stimuli elicit joint responses in the “confusion zone” (orange circle; 
!𝑹!! ≤ 𝑑 where 𝑑 is the distance from the origin) of a given frequency channel, the associated fixation 
disparities are harder to discriminate than when responses are farther away. Stimuli that cause 
responses within the confusion zone of one frequency channel can elicit more discriminable responses 
in another. (a) Stimuli that cause responses within the confusion zone for a low spatial frequency 
channel (e.g., 1 cyc/deg) cannot be discriminated based on those responses alone. But a substantial 
subset of those stimuli elicits responses outside of the confusion zone of a higher spatial frequency 
channel (e.g. 2cyc/deg). Furthermore, stimuli that cause responses in the confusion zones of the first 
two spatial frequency channels can elicit responses outside the confusion zone of an even higher 
spatial frequency channel (e.g. 4cyc/deg), and so on. This complementary processing across channels 
enables good overall discrimination performance. (b) The same pattern holds when the initial 
confusion zone is for a binocular receptive field pair that prefers a high spatial frequency (e.g. 
8cyc/deg), and the disambiguating channels are lower frequency. 
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For some fixation disparities, certain spatial frequency channels are more useful than 
others on average across stimuli (see Fig. 5). However, with a particular stimulus, Fig. 8 
shows that the usefulness of different spatial frequency channels depends not just on 
which channels are most useful on average, but on the specific constellation of features 
that defines each stimulus and on how the features cause the within-channel receptive 
fields respond. That is, for given stimulus, the quality of the information in a certain spatial 
frequency channel is signaled by the magnitude of the within-channel receptive-field 
responses. A stimulus that produces receptive field responses in the confusion zone of 
the 1cpd channel, for example, indicates that the channel provides no relevant information 
for latent variable discrimination (see Fig. 8a). Under such circumstances, the channel 
should be ignored. The rules for computing the likelihood do just this.  
Despite the fact that the rules for computing the likelihood from each stimulus are 
deterministic (i.e. they are fixed, or passive, in that the same rules are used to process 
each stimulus), they automatically and adaptively prioritize the information that each 
channel provides on a stimulus-by-stimulus basis, according to the quality of the within-
channel information. Specifically, the magnitude of the within-channel receptive field 
responses signals the usefulness of each channel.  
To sum up, the statistics of receptive field response dictate the deterministic rules of 
computation; they depend on the quadratic combination of responses (see Fig. 2d) with 
weights 𝑸 = 𝑪&3(  (see Eq. 4). The stimulus-by-stimulus responses determine the 
influence that each feature in a particular stimulus should have in computing the 
likelihood. Hence, with a set of fixed (possibly synaptically-implemented) weights, the 
magnitude of receptive field responses in each channel automatically determines the 
influence each channel should have on the computation of the likelihood, and of the 
eventual estimate, for each individual stimulus.  

Methods 
Natural stereo-image dataset 
The dataset used for the analysis in this paper consisted of 91 stereo-images (1920x1080 
pixels) of natural scenes taken on and around the University of Texas at Austin (Burge et 
al., 2016). The left- and right-eye images were photographed from one human interocular 
distance (i.e. 65mm) apart, and were each co-registered pixel-wise with laser-based 
distance measurements having millimeter-scale precision. The nodal points of the 
photographic camera and the laser-range scanner were aligned with a custom-built 
robotic gantry such that there were no half-occlusions between the photographic images 
and distance “images” of each scene. The field of view of each image subtended 
35.8ºx21.1º of visual angle. 
 
In a binocular visual system, surface points in the scene tend to be imaged in each image 
at different locations because each eye has a different vantage point on the scene. Such 
local differences in the positions of these corresponding points are binocular disparities. 
Biological visual systems must estimate which points in the left-eye image correspond to 
which points in the right-eye image from image data. Solving this correspondence 
problem is a core computational challenge underlying stereo-depth perception. 
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Fortunately, because of the properties of the dataset, ground-truth corresponding points 
can be computed directly from the distance data with arc second precision. Custom 
software, which is based on the principles of ray-tracing, is available online (Iyer & Burge, 
2018; https://github.com/burgelab/StereoImageSampling). Each pair of left- and right-eye 
corresponding points depicts a particular point on a surface in the three-dimensional 
scene (see Fig. 1a). 
 
Stereo-image patches were sampled with fixation disparity by simulating a virtual human 
observer that converges his/her eyes in front, on, or behind a surface point in the 3D 
scene along the cyclopean line of sight. These eye postures cause the surface point to 
have uncrossed, zero, and crossed fixation disparities, respectively (Fig. 1b). Fixation 
disparity is rigorously given by the difference in vergence angle (i.e. the angle between 
the left- and right-eye lines of sight) between the currently fixated location and the 
vergence demand of the surface point in question  

 
𝛿? =	θ>@> − θA!B,                (8) 

 
where θ>@> is the vergence angle demanded by the target point on the surface and θA!B is 
the vergence angle associated with the fixated location. Clearly, if the eyes are perfectly 
fixated on the surface point, the surface point is imaged with zero fixation disparity. 
 
Natural scenes are composed of objects that have three-dimensional structure, so images 
of natural scenes tend to depict scenes that vary in depth. The amount of local depth 
variability can vary significantly across image patches. We index the amount of local 
depth variability in a patch with disparity contrast. Disparity contrast is given by 

𝐶& = Z(
C
∑ (𝛿! − 𝛿0)'C
!D( ,      (9) 

 
where 𝛿! is the disparity at each pixel 𝑖, 𝛿0 is the fixation disparity at the central pixel (i.e. 
the corresponding point), and 𝑁 is the number of pixels within the image. (For a given 
fixation distance, disparity contrast perfectly covaries with local depth variation.) Natural 
image patches with low and high disparity contrast are shown in Fig. 1c. Patches with low 
disparity contrast (< 2arcmin)—which are the focus of the current article—occur far more 
often than patches with high disparity contrast in natural scenes (Supplementary Fig. S2; 
see also Iyer & Burge, 2018).  
 
Response model 
Response model: Binocular receptive fields 
Binocular receptive fields have a left-eye and a right-eye component.  Each eye’s 
component is modeled as a vertically-oriented Gabor, a vertical sine wave multiplied by 
a Gaussian envelope. The spatial frequency octave bandwidth was 1.2 and with an 
orientation bandwidth of 42º. The left-eye component of each binocular receptive field 
had a phase-shift of either -45º or +45º, and the right-eye component had a phase-shift 
of either +45º or -45º, such that every binocular receptive field had a preferred phase 
disparity of either -90º or 90º. The preferred fixation disparity, in degrees of visual angle, 
is given by 
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𝛿EFG =
(
HI?

J'()
A'()

,																										(10)	

 
where 𝜙EFG is the preferred phase disparity in degrees and 𝑓EFG is the preferred spatial 
frequency. 
 
Each model binocular receptive field preferred one of thirteen spatial frequencies equally-
spaced in the log-domain between 1 and 8 cyc/deg. Fig. 2a shows four pairs of binocular 
receptive field pairs, which are in quadrature phase, with spatial frequency preferences 
of 1, 2, 4, and 8 cyc/deg. Fig. 2b shows horizontal slices through the binocular receptive 
field that selects for the lowest spatial frequency. 
The responses of model binocular receptive fields (see below) to natural stereo images 
were computed for 121 fixation disparities between -30 to 30 arcmin, in 0.5 arcmin steps. 
For each disparity level, we sampled a total of 21784 binocular image patches from 91 
natural stereo-images. The spatial region of the image patch that contributes to each 
normalization factor is matched to the size of the receptive field. The largest receptive 
field, which prefers 1 cyc/deg, was 72x72 pixels in size. The smallest receptive field, which 
prefers 8 cyc/deg, was 9x9 pixels in size. 
 
Response Model: Divisive normalization 
A binocular receptive field receives visual input from both the left and right eyes. In 
general, the left-and right-eye images will tend to be slightly different, due to each eye’s 
different vantage point on the depth-varying scene. The response of a binocular receptive 
field is given by the sum of the normalized outputs of the left- and right-eye receptive field 
components: 𝑅L and 𝑅R . Specifically, the response of a binocular receptive field	is given 
by 

𝑅 = 	𝑅L 	+ 	𝑅R
=	 fL

*cL
C+

+ fR
*cR
C,

,               (11) 

 
where  fL and fR are, respectively, the left-eye and right-eye linear receptive fields, c/ and 
c$ are the Weber contrast images for the left and right eye, and 𝑁L and 𝑁R denote the 
normalization factors for the linear responses of the left- and right-eye receptive field 
components. 
 
Two types of normalization are considered: broadband and narrowband. Broadband 
normalization factors for the left- and right-eye receptive fields are given by 
 

𝑁/brd = Z∑c/%
' = Z∑Ac+%

'

𝑁$brd = Z∑c$%
' = Z∑Ac,%

'
,      (12) 

where Ac+ and Ac, are the amplitude spectrum of the left- and right-eye contrast images, 
respectively. Parseval’s theorem states that the total energy of a contrast stimulus equals 
the total power of the (amplitude) spectrum. Thus, Eq.12 shows that all stimulus features 
of the binocular image contribute equally to the factor of broadband normalization. (Note 
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that the normalization factor could alternatively be computed using a method that 
computes a single binocular normalization factor across the left- and right-images (e.g., 
Hou, Nicholas, & Verghese, 2020). However, the binocular receptive field responses are 
largely invariant to this subtlety (see Fig.S1 in Supplement)  
	
The narrowband—or feature-specific—normalization factors for the left- and right-eye 
receptive fields are given by 

𝑁/nrw = 𝑁/brd𝑆/ = Ac+
" Af+

𝑁$nrw = 𝑁$brd𝑆$ = Ac,
" Af, ,

   (13) 

 
where 𝑆L is the cosine similarity in the amplitude spectrum between the left-eye image 
and the left-eye receptive field and 𝑆$ is the same quantity computed for the other eye. 
These quantities provide a phase-invariant measure of similarity between the images and 
receptive fields in the two eyes and are specifically given by  

    𝑆L =
Ac+
* Af+

KAc+KLAf+L
 

    𝑆$ =
Ac,
* Af,

KAc,KLAf,L
 ,                   (14)     

where the ‖.‖ operator indicates the L2 norm. 
 
Eq.14 entails that different features of the stimulus contribute unequally to the narrowband 
normalization factor. Stimulus features that are similar to the preferred features of the 
receptive field contribute more than those that are dissimilar. When the left- and right-eye 
input perfectly matches its receptive field (i.e. 𝑆L  = 𝑆R = 1 ), the narrowband and 
broadband normalization factors are identical. In most cases, however, 𝑆L  and 𝑆R  are 
smaller than 1.0, which causes the narrowband normalization factor to be smaller than 
the broadband normalization factor and a relatively larger response.  
 
Discussion 
In this study, we demonstrated the functional value of narrowband (or feature-specific) 
response normalization in the neural coding of binocular disparity—a powerful cue to 
depth—in stereo-images of natural scenes. Using a database of natural stereo-images 
and a computational approach, we examined how common components of neural 
response models affect the statistical properties of binocular receptive field response. The 
analysis of response statistics provides insights into the design principles that should 
underlie population coding in image-computable models of natural tasks. Specifically, by 
quantifying the Fisher information about binocular disparity in the receptive field 
responses to natural images, we demonstrate how the spatial frequency preferences of 
the encoding receptive fields shape the response statistics, dictate the optimal 
combination rules across spatial frequencies, and determine the precision with which 
different binocular disparities are discriminated. The predicted patterns of discrimination 
performance are in line with classic and recent reports in the literature. The current 
approach represents a promising method for determining how neural systems should be 
designed and how patterns of human performance can be predicted by the task-relevant 
statistical properties of natural images and scenes.	
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Functional benefits of feature-specific normalization 
Contrast normalization is a ubiquitous neural computation. It was initially introduced 
approximately thirty years ago to help account for the contrast response function of cells 
in early visual cortex (Geisler & Albrecht, 1991; Heeger, 1992). In the three decades 
since, it has been invoked to account for many other properties of neural response 
(Carandini & Heeger, 2012). In recent years, feature-specific (or narrowband) 
normalization has been shown to improve accounts of neural responses to natural images 
(Burg et al., 2021; Coen-Cagli et al., 2012; Coen-Cagli et al., 2015; Fang et al., 2023; 
Goris et al., 2024), and to improve latent-variable encoding-decoding from natural images 
(Burge & Geisler, 2014; Jaini & Burge, 2017; Iyer & Burge, 2019).  
 
Here, we derived analytic expressions and performed empirical analyses that quantify the 
computational benefit of narrowband over broadband normalization when the task is to 
discriminate binocular disparity from natural stereo-images. This improvement occurs 
because narrowband response normalization formats the receptive field responses to 
natural images so that they are approximately Gaussian-distributed (also see Wainwright 
& Simoncelli, 2000; Schwartz & Simoncelli, 2001; Iyer & Burge, 2019), and can be more 
readily decoded. This increase in Fisher information corresponds to a decrease in 
discrimination threshold by the square root of the same factor. So narrowband 
normalization should be favored by evolutionary processes that seek to maximize an 
organism’s ability to precisely discriminate the depth structure of natural scenes, 
especially when the relevant neural populations are large. 
 
Receptive field responses, optimal computations, and a generalized energy model 
The underlying presumption of this manuscript is that the normalized receptive field 
response is the stage of neural processing best suited to a computational analysis of the 
information in natural images supporting stereo-depth discrimination (Marr, 1982). It is 
widely appreciated that divisive normalization helps account for the response properties 
of simple and complex cells in cortex (Albrecht & Geisler, 1991; Heeger, 1992; Carandini, 
Heeger, Movshon, 1997; Carandini & Heeger 2012). But spiking neural responses are 
quite obviously not Gaussian-distributed (Baddeley et al., 1997). To what degree does 
the current findings relate to real neurons in cortex and to mainstream approaches in 
computational neuroscience for analyzing their response properties? 
  
Analyzing receptive field response statistics rather than spiking responses departs from 
practices in some areas of computational neuroscience (e.g., Hubel & Wiesel, 1962; 
Shadlen & Newsome, 1998; Rieke et al., 1999), but it aligns with practices in others. 
Subunit-based methods for neural systems identification—for example, spike triggered 
covariance analysis (Cook & Forzani, 2009; Rust et al., 2005), the generalized quadratic 
model (Park et al., 2013), and other related approaches (McFarland, Cui, Butts, 2013)—
assume that quadratic combination of subunit receptive field responses underlies the 
intracellular voltage and spiking responses of complex cells. Such computations extract 
all information in the subunit receptive field population response up to second order, and 
do so optimally when the subunit responses are Gaussian-distributed (Jaini & Burge, 
2017). So understanding the computations assumed by popular models in the context of 
Gaussian-distributed subunit responses links popular descriptive models to a normative 
account that is grounded in the statistics of natural scenes.  
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Given the mean-zero multivariate Gaussian-distribution of population response, 
computing the log-likelihood that a stereo-image with a particular disparity elicited an 
observed response therefore requires quadratic combination of the receptive field 
responses (see Eq. 4). Real neural systems that carry out such computations, or close 
approximations to them, would be well-suited to implementing maximum likelihood or 
Bayesian estimators. Also, quadratic combination is a hallmark of the disparity energy 
model, although the optimal computations—here, with weights given by the (inverse) 
covariance matrix 𝐐 = 𝐂&3(—are best-described as a generalized version of it (Jaini & 
Burge, 2017; Herrera & Burge, 2024). The current results thus provide a normative 
justification for a classic descriptive model of neural response. Analyzing how natural 
stimuli stimulate sensors that are representative of those in real biological systems can 
provide new insight into why neural systems compute as they do. 
 
Combining information across spatial frequency channels 
Previous computational reports have shown that multiple different spatial frequencies are 
differentially useful for coding binocular disparity (Smallman & Macleod, 1994; Read & 
Cumming, 2007; Qian & Zhu, 1997). But these studies employ heuristics for how to 
combine information across spatial frequency channels. The current analysis provides a 
principled approach for determining how information across multiple spatial frequency 
channels should be combined (Burge & Geisler, 2014). Specifically, it specifies the 
weights for how information should be quadratically combined across receptive field 
responses—and hence across spatial frequency channels—to compute the likelihood of 
a given disparity, which are dictated by the covariance of responses across stimuli having 
that disparity (see Eq.15). Additionally, it provides closed form expressions for how that 
information determines discrimination thresholds, arguably the most common 
psychophysical measure for assessing sensory-perceptual performance.  
The fact that the receptive field responses—within and across spatial frequency 
channels—to natural stimuli associated with a particular fixation disparity are well-
approximated as multivariate mean-zero Gaussian dictates that those responses should 
be quadratically combined to obtain the likelihood of each disparity. The covariance of 
those response distributions specifies the weights with which that quadratic combination 
should occur, and therefore how information from different spatial frequencies should be 
combined (see Results).  
 
The general approach of examining the statistical properties of receptive field responses 
to different natural stimuli that are associated with the same value of the latent variable 
should be useful for developing normative models of many sensory-perceptual tasks, 
within and outside of vision (Burge, 2020). Such models will be important for gaining a 
principled understanding as to why neurons carry out the computations that they do.  
 
Gabor vs. task-optimized receptive fields 
The current analysis analyzed the response of biologically-plausible Gabor-shaped 
binocular receptive fields and used Fisher information to compute the theoretical lower 
bounds on disparity discrimination thresholds implied by the statistical properties of 
receptive field response. Because the receptive fields used here were not themselves 
optimized for the task of disparity-discrimination with natural stimuli (Jaini & Burge, 2017), 
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it cannot be claimed, that a system making use of task-optimized receptive fields could 
not exceed the indicated performance limits. Previous attempts to learn, from natural 
images, receptive fields optimized for disparity estimation have yielded Gabor-like 
receptive fields (Burge & Geisler, 2014; Burge & Jaini, 2017; Jaini & Burge, 2017) and 
performance patterns similar to those reported here. So the current results should 
therefore be considered representative. Also, the results suggest that feature-specific 
normalization should be incorporated into routines for learning task-optimized receptive 
fields, for the simple reason that it formats their responses so that the task-relevant latent 
variable can be more precisely decoded. 
 
Stimulus variability and stereo-depth discrimination 
A central problem faced by the visual system is to precisely discriminate and accurately 
estimate behaviorally-relevant latent variables in the face of substantial natural stimulus 
variability. The difficulty is that there are an uncountable number of natural stereo-images 
that can share a given fixation disparity. This external stimulus variability inevitably limits 
the precision of perceptual estimation (or categorization). One way to formulate the goal 
of sensory-perceptual processing is to determine the computations that maximize 
accuracy while minimizing the deleterious effect of natural nuisance variability to the 
maximum possible extent (Burge & Jaini, 2017; Chin & Burge, 2020). 
 
The current analysis was constrained to examine how natural image variation associated 
with nearly flat surfaces—i.e. variation across stereo-images with near-zero disparity 
contrast (see Methods)—limits performance. Although flat surfaces—or, more precisely, 
stereo-images with low disparity contrast—dominate the visual diet (see Fig. S2), it is not 
uncommon for a patch of image to depict a surface that is not flat, or to depict two surfaces 
at different depths (Iyer & Burge, 2018). How such local depth variability impacts disparity 
estimation and discrimination in natural scenes is a topic of ongoing research.  
 
Predicting human psychophysical data 
The current computational results predict many well-established aspects of human 
disparity discrimination performance in the literature. Human disparity discrimination 
thresholds tend to rise approximately exponentially with fixation disparity (Badcock & 
Schor, 1985; Blakemore, 1970; McKee, Levi, & Bowne, 1990), and the lowest disparity 
discrimination threshold (i.e. the disparity detection threshold) is approximately 30 arcsec 
under typical (non-vernier) conditions (Blakemore, 1970; McKee, Levi, & Bowne, 1990). 
Under ideal (vernier) conditions, the detection threshold can reach 5 arcsec, 
approximately one sixth the width of a foveal cone photoreceptor (Stevenson, Cormack, 
Schor, 1989). However, the experiments that established these findings were all carried 
out with artificial stimuli: gratings (Badcock & Schor, 1985), random dot stereograms 
(Stevenson et al., 1989; McKee et al., 1990), and individual dichoptically-presented dots 
(Blakemore, 1970).  
 
Recent findings show that similar patterns of performance occur when human observers 
are tasked with discriminating depth from natural stereo-images. White & Burge 
(submitted) tasked human observers with discriminating depth from small (~1deg) 
patches of stereo-images that depicted surfaces in natural scenes. Some of the surfaces 
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were nearly flat. Other surfaces were substantially bumpier. For both surface types, 
discrimination thresholds increased exponentially with fixation disparity. Thresholds 
associated with bumpier surfaces were larger than those with flat surfaces by a 
multiplicative scalar. The current article analyzed only surfaces that were nearly flat (see 
Fig. 1). A preliminary analysis on bumpy surfaces, using the same dataset and 
computational framework used in the rest of the paper (Ni & Burge, 2023), predicts 
multiplicative threshold increases that are similar to those that have been observed 
psychophysically. As mentioned above, a more detailed analysis is in progress. 
 
Conclusion 
Computational-level investigations of how properties of natural stimuli and components 
of neural response models alter the form and fidelity of the encoded information can help 
one evaluate the design of real neural systems, discover the functional role of different 
components, and understand how perceptual performance in natural viewing is supported 
by underlying neural activity. The task and the stimulus ensemble determine the level of 
nuisance variability. The receptive field determines the information that is extracted, or 
selected, from each stimulus. And the form of normalization determines how the selected 
information will be formatted. The current analysis demonstrates a functional advantage 
for feature-specific (i.e. narrowband) normalization, quantifies the relative usefulness of 
different spatial frequencies in disparity discrimination, and predicts human performance 
in stereo-depth perception tasks.  
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Fisher information in mean-zero Gaussian-distributed Responses 
The zero-mean Gaussian distribution is given by 
 

𝑝(𝑅|𝛿) = (
:'M*(&)

exp <− (
'
B	 $

!

*(&)
	C=.                                   (S1) 

 
For receptive field responses 𝑅 to be useful for discriminating a latent variable—here, 
fixation disparity—the conditional response distributions 𝑝(𝑅|𝛿) must change with that 
latent variable. For a zero-mean Gaussian distribution, this requirement entails that 
variance 𝑣(𝛿) is a function of the latent variable. The expression for the Fisher 
information that is contained in such Gaussian-distributed responses is obtained by 
plugging the expression for the Gaussian probability density (Eq. S1 into Eq. 1b in the 
main text. Specifically, 
 

𝐽-(𝛿) = 𝐸$ aB
N
N&
ln < (

√'M*
exp <− (

'
B$

!

*
	C==C

'
b,	                        (S2) 

 
where, for notational simplicity, the dependence of the variance on the latent variable 
has been dropped. 
 
Using the product rule for logarithms and distributing the derivative operator 
 

𝐽-(𝛿) = 𝐸$ aB−
N
N&

(
'
ln2𝜋 − N

N&
(
'
ln𝑣 − (

'
N
N&
	<B$

!

*
	C=C

'
b.           (S3) 

 
Taking the derivatives 
 

𝐽-(𝛿) = 𝐸$ a
(
1
B𝑅' *

"

*!
− *"

*
C
'
b.                                               (S4) 

 
Expanding the square 
 

𝐽-(𝛿) =
(
1
𝐸$ a.𝑅1

*"!

*-
− 2𝑅' *

"!

*.
+ *"!

*!
4b.                               (S5) 
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If 𝑅 is mean-zero and Gaussian distributed, 𝐸[𝑅'] = 𝑣 and 𝐸[𝑅1] = 3𝑣', so application 
of the expectation operator gives 
 

𝐽-(𝛿) = (
1
a.3𝑣' *

"!

*-
− 2𝑣 *

"!

*.
+ *"!

*!
4b.                            (S6) 

Canceling terms 

𝐽-(𝛿) = (
1
a.3 *

"!

*!
− 2 *

"!

*!
+ *"!

*!
4b.                                 (S7) 

Simplifying yields a compact expression for the Fisher information in scalar mean-zero 
Gaussian-distributed random variables 

 

𝐽-(𝛿) = (
'
B*

"

*
C
'

.                                                        (S8) 
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Fisher information in mean-zero Laplace-distributed responses 
The zero-mean Laplace distribution is given by 
 

𝑝(𝑅|𝛿) = (
'P
exp <− |$|

P(&)
=.                                (S9) 

For receptive field responses 𝑅 to be useful for discriminating a latent variable—here, 
fixation disparity—the conditional response distributions 𝑝(𝑅|𝛿) must change with that 
latent variable. For a zero-mean Laplace distribution, this requirement entails that the 
scale parameter 𝑏(𝛿) is a function of the latent variable. The expression for the Fisher 
information that is contained in such Laplace-distributed responses is obtained by 
plugging the expression for the Laplace probability density (Eq. S1) into Eq. 1b in the 
main text, Specifically,  

𝐽/(𝛿) = 𝐸$ aB
%
%&
ln < (

'P
exp <− |$|

P
==C

'
b,               (S10) 

where, for notational simplicity, the dependence of the scale parameter on the latent 
variable has been dropped. 
 
Using the product rule for logarithms and distributing the derivative operator 
 

𝐽/(𝛿) = 𝐸$ aB−
%
%&
ln2 − %

%&
ln𝑏 − %

%&
<|$|
P
=C
'
b.     (S11) 

Taking the derivative 

𝐽/(𝛿) = 𝐸$ aB−
P"

P
+ |𝑅| <P

"

P!
=C
'
b.                       (S12) 

Expanding the square 

𝐽/(𝛿) = 𝐸$ a.|𝑅|'
P"!

P-
− 2|𝑅| P

"!

P.
+ P"!

P!
4b.           (S13) 

If 𝑅 is mean-zero and Laplace-distributed, 𝐸[|𝑅|'] = 2𝑏' and 𝐸[|𝑅|] = 𝑏. Substituting 
and making use of the fact that 𝐸[𝑎𝑥] = 𝑎𝐸[𝑥] gives 

 

𝐽/(𝛿) = 2𝑏' P
"!

P-
− 2𝑏 P

"!

P.
+ P"!

P! .                        (S14) 

Simplifying 

                             		𝐽/(𝛿) = P"!

P! .                                                   (S15) 

The standard deviation of the Laplace distribution is given by 𝜎 = 𝑏√2, so the Fisher 
information can be expressed in terms of the response standard deviations and their 
derivatives with respect to disparity 
 

𝐽/(𝛿) = 0"!

0! .                                                    (S16) 
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The Fisher information can also be expressed in terms of the variance. Rewriting,  
 

𝐽/(𝛿) =
R /
/0S*

1
!TU

!

*
.                                         (S17) 

 
Taking the derivative 

𝐽/(𝛿) =
R1!*

21!*"U
!

*
.                                       (S18) 

 
Simplifying yields an equivalent expression for the Fisher information in a scalar mean-
zero Laplace-distributed random variable, expressed in terms of the variance 
 

𝐽/(𝛿) =
(
1
B*

"

*
C
'
.                                         (S19) 
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Fisher information in multivariate mean-zero Gaussian-distributed Responses 
The zero-mean Gaussian distribution is given by 
 

𝑝(𝐑|𝛿) = (2𝜋)3
3
!|𝐂(𝛿)|3

1
! exp <− (

'
(𝐑"𝐂3((𝛿)𝐑)=.                     (S20) 

 
For the receptive field population response 𝐑 to be useful for discriminating a latent 
variable—here, fixation disparity—the conditional response distributions 𝑝(𝐑|𝛿) must 
change with that latent variable. For a zero-mean Gaussian distribution, this 
requirement entails that covariance 𝐂(𝛿) changes with the latent variable. By definition, 
the covariance matrices are positive definite and symmetric. The expression for the 
Fisher information that is contained in such Gaussian-distributed responses is obtained 
by plugging the expression for the Gaussian probability density (Eq. S20) into Eq. 1b in 
the main text.  
 
Specifically, 
 

𝐽-(𝛿) = −𝐸𝑹 <B
%!

%&!
ln <(2𝜋)3

3
! det(𝐂)3

1
! exp <− (

'
(𝐑2𝐂3(𝐑)==C=,                      (S21) 

 
where, for notational simplicity, the dependence of the covariance matrix on the latent 
variable has been dropped. 
 
Taking the log and distributing one of the two derivative operators 
 

𝐽-(𝛿) = −𝐸𝑹 <
%!

%&!
B− 8

'
ln2𝜋 − (

'
ln det(𝐂) − (

'
[𝐑"𝐂3(𝐑]C=.                             (S22) 

 
Taking the first derivative of each term 
 

𝐽-(𝛿) = −𝐸𝑹 <
%
%&
B− (

'
𝑇𝑟(𝐂3(𝐂.) + (

'
[(𝐑2𝐂3(𝐂.𝐂3(𝐑)]C=.                              (S23) 

 
Taking the second derivatives, using the chain rule, the product rule, and the fact that 
the derivative of the trace is the trace of the derivative—that is,  %

%W
𝑇𝑟(𝐴𝑋) =

𝑇𝑟 B %
%W
𝐴𝑋C—gives  

 
𝐽-(𝛿) = −𝐸𝑹 <

(
'
(𝑇𝑟(𝐂3(𝐂.𝐂3(𝐂. − 𝐂3(𝐂..) + 𝐑2𝐂3((𝐂.. − 2𝐂.𝐂3(𝐂.)𝐂3(𝐑)	=.  (S24) 

 
Rewriting using the cyclic property of traces and the fact that a scalar equals the trace 
of a scalar gives 
 
𝐽-(𝛿) = −𝐸𝑹 <

(
'
B𝑇𝑟(𝐂3(𝐂.𝐂3(𝐂. − 𝐂3(𝐂..) + 𝑇𝑟(𝐑𝐑2𝐂3((𝐂.. − 2𝐂.𝐂3(𝐂.)𝐂3()C	=. (S25) 
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The expectation of the trace is the trace of the expectation and the expectation of the 
outer product of the mean-zero responses 𝐸𝑹[𝐑𝐑𝑻] equals the covariance matrix. It 
follows that 𝐸𝑹[𝑇𝑟(𝐑𝐑𝑻𝐂3(𝐀)] = 𝑇𝑟(𝐸𝑹[𝐑𝐑𝑻]𝐂3(𝐀) = 𝑇𝑟(𝐂𝐂3(𝐀) = 𝑇𝑟(𝐈𝐀) = 𝑇𝑟(𝐀).  
 
Hence,  

 
𝐽-(𝛿) = − <(

'
B𝑇𝑟(𝐂3(𝐂.𝐂3(𝐂. − 𝐂3(𝐂..) + 𝑇𝑟J(𝐂.. − 2𝐂.𝐂3(𝐂.)𝐂3(KC	=.   (S26) 

 
 
Distributing the trace operator gives 
 

𝐽"(𝛿) = − #
$
+𝑇𝑟(𝐂%#𝐂&𝐂%#𝐂&) − 𝑇𝑟(𝐂%#𝐂&&) + 𝑇𝑟(𝐂&&𝐂%#) − 2𝑇𝑟(𝐂&𝐂%#𝐂&𝐂%#)1.    (S27) 

 
Subtracting like terms, and recognizing the cyclic property of traces (e.g. 𝑇𝑟(𝐀𝐁𝐂) =
𝑇𝑟(𝐁𝐂𝐀) = 𝑇𝑟(𝐂𝐀𝐁) ) gives 
 

               𝐽-(𝛿) =
(
'
𝑇𝑟(𝐂3(𝐂.𝐂3(𝐂.),                                                       (S28) 

 
which is equal to Eq. 5 in the main text expression in the main text. 
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Fisher information in multivariate mean-zero Laplace-distributed responses 
For a zero-mean elliptical multivariate Laplace distribution the probability density is 
given by 

𝑝(𝐑|𝛿) = 2
3
!(𝜋)3

3
!|𝐂(𝛿)|3

1
!
YZ([3!\

Y(([8)
exp <−(2𝐑"𝐂3((𝛿)𝐑)

1
!=,   (S29) 

where 𝑛 is the number of dimensions and Γ(. ) Is the gamma function, which 
interpolates the factorial function of the positive integers for the positive reals (Giller, 
2005, 2024). 
 
For a receptive field population response 𝐑 to be useful for discriminating a latent 
variable—here, fixation disparity—the conditional response distributions 𝑝(𝐑|𝛿) must 
change with that latent variable. For a zero-mean elliptically symmetric Laplace 
distribution, this requirement entails that covariance 𝐂(𝛿) changes with the latent 
variable. The expression for the Fisher information is obtained by substituting the 
expression for the Laplace distribution (Eq. S29) into Eq. 1 in the main text. Specifically, 
 

𝐽/(𝛿) = 𝐸𝑹 s7
%
%&
ln -2

3
!(𝜋)3

3
! det(𝐂)3

1
!
YZ([3!\

Y(([8)
exp <−(2𝐑"𝐂3(𝐑)

1
!=58

'

t,  (S30) 

 
where, for notational simplicity, the dependence of the covariance matrix on the latent 
variable has been dropped. 
 
Using the product rule for logarithms  

𝐽/(𝛿) = 𝐸𝑹 s7
%
%&
.8
'
ln2 − 8

'
ln𝜋 − (

'
ln det(𝐂) + ln

YZ([3!\

Y(([8)
− √2(𝐑"𝐂3(𝐑)

1
!48

'

t. (S31)  

 
Taking the first derivative of each term and rearranging 

𝐽/(𝛿) = 𝐸𝑹 s7
(
√'
(𝐑"𝐂3(𝐑)3

1
!(𝐑2𝐂3(𝐂.𝐂3(𝐑) − (

'
𝑇𝑟(𝐂3(𝐂.)8

'

t.  (S32)  

 
Taking the square 
 

𝐽!(𝛿) = 𝐸𝑹 a
#
$
(𝐑%𝐂&#𝐑)&#(𝐑'𝐂&#𝐂(𝐂&#𝐑)$ − #

√$
(𝐑%𝐂&#𝐑)&

!
"(𝐑'𝐂&#𝐂(𝐂&#𝐑)𝑇𝑟(𝐂&#𝐂() + #

*
𝑇𝑟(𝐂&#𝐂()$g. (S33)  

 
Rewriting for clarity 
 

𝐽4(𝛿) =
5
6
𝐸𝑹 '

8𝐑+𝐂,-𝐂.𝐂,-𝐑;
/

𝐑0𝐂,-𝐑
( − 5

√6
𝐸𝑹 '

𝐑+𝐂,-𝐂.𝐂,-𝐑
=𝐑0𝐂,-𝐑

( 𝑇𝑟(𝐂>5𝐂?) + 5
@
𝑇𝑟(𝐂>5𝐂?)6.   (S34)  

 
Substituting to reduce visual complexity 
 

𝐽%(𝛿) =
&
*
𝐸𝑹 6

,𝐑#𝐀𝐑/
"

𝐑#𝐁𝐑
7 − &

√*
𝐸𝑹 6

𝐑#𝐀𝐑
2𝐑#𝐁𝐑

7 𝑇𝑟(𝐂3&𝐂4) + &
5
𝑇𝑟(𝐂3&𝐂4)*,   (S35)  

 
where 𝐀 = 𝐂3(𝐂.𝐂3( and 𝐁 = 𝐂3(.  
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To evaluate the terms with expectation operators, we make use of results regarding the 
expectation of ratios of quadratic forms in elliptical random variables. Note that both 
terms in Eq. S35 with an expectation operator have the following form 
 

𝐸𝑹 a
Z𝐑*𝐀𝐑\

A

(𝐑*𝐁𝐑)B
b,                (S36) 

 
where 𝑝 = 2 and 𝑞 = 1 in the first term and 𝑝 = 1 and 𝑞 = &

*
 in the second term, so we 

seek a general expression for the expectation of this form. For arbitrary elliptical mean-
zero random variable 𝐑 ~	E(𝟎, 𝐂) we define 𝐀w = 𝐂

1
!𝐂3(𝐂.𝐂3(𝐂

1
! and 𝐁w = 𝐂

1
!𝐂3(𝐂

1
! such 

that 𝐱 = 𝐂3
1
!𝐑	~	E(𝟎, 𝐈). Substituting gives 

 

𝐸𝑹 a
Z𝐑*𝐀𝐑\

A

(𝐑*𝐁𝐑)B
b = 𝐸𝐱 a

Z𝐱*𝐀k𝐱\
A

Z𝐱*𝐁k𝐱\B
b = 𝐸𝐱 a

Z𝐱*𝐀k𝐱\
A

(𝐱*𝐱)B
b,       (S37)  

 
where the last equality holds because 𝐁w = 𝐂

1
!𝐂3(𝐂

1
! = 𝐈. 

 
The projection of a standard elliptical random variable (of arbitrary form) onto the unit 
sphere is independent of its vector magnitude (i.e. the magnitude of the projection 
equals 1.0). Expressing 𝐱 = 𝐮𝑤 where 𝐮 = 𝐱(𝐱"𝐱)3

1
! and 𝑤 = (𝐱"𝐱)

1
!, where 𝐮 and 𝑤 are 

independent of one another, allows one to rewrite Eq. S37 as  
 

𝐸 6,𝐱
#𝐀7𝐱/$

(𝐱#𝐱)%
7 = 𝐸 6:

$,𝐮#𝐀7𝐮/$

:%(𝐮#𝐮)%
7 = 𝐸 6,𝐮

#𝐀7𝐮/$

(𝐮#𝐮)%
7 𝐸 1:

$

:%2 = 𝐸𝐮 6
,𝐮#𝐀7𝐮/$

(𝐮#𝐮)%
7 𝐸𝐱[(𝐱<𝐱)=3>],  (S38)  

 
where the step separating the expectations follows from independence. Rewriting Eq. 
S38 using the fact that all random vectors projected onto the unit sphere are length 1.0 
eliminates the denominator of the 𝐮-based term and gives 
 

𝐸𝐱 6
,𝐱#𝐀7𝐱/$

(𝐱#𝐱)%
7 = 𝐸𝐮 1@𝐮<𝐀B𝐮C

=
2 𝐸𝐱[(𝐱<𝐱)=3>].      (S39)  

 
The solution of the problem now reduces to finding expressions for each of the two expectations 
in Eq. S39 for the relevant values of 𝑝 and 𝑞. The expression for the expectation 𝐸𝐮 1@𝐮<𝐀B𝐮C

=
2 is 

known for 𝑝 = 2 and 𝑝 = 1 when 𝐮 is uniformly distributed on the unit sphere, as it is here. 
Specifically,  
 

𝐸𝐮 1@𝐮<𝐀B𝐮C
*
2 = &

?(?(*)
.2𝑇𝑟@𝐀B𝐀BC+ 𝑇𝑟@𝐀BC2/,      (S40a) 

𝐸𝐮 1@𝐮<𝐀B𝐮C
&
2 = &

?
𝑇𝑟D𝐀BE.         (S40b) 

 
The expression for the expectation 𝐸𝐱[(𝐱"𝐱)l3m] requires a bit more development. If the 
elliptical random variable 𝐱 is multivariate Laplace, it can be expressed as 𝐱 = √𝑣𝐳, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.05.611536doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611536
http://creativecommons.org/licenses/by-nc-nd/4.0/


product of independent standard scalar exponential random variable 𝑣~Exp(1) and 
standard multivariate normal random variable 𝐳	~𝑁(𝟎, 𝐈).1 Therefore,  
 

𝐸𝐱[(𝐱<𝐱)=3>] = 𝐸𝐱 1@√𝑣𝐳<𝐳√𝑣C
=3>

2 = 𝐸D(𝐳<𝐳)=3>𝑣(=3>)E = 𝐸[(𝐳<𝐳)=3>]𝐸D𝑣(=3>)E. (S41)  
 
Both expectations in the term on the right-hand side are known. The first expectation on the 
right-hand side of Eq. S41 is the (𝑝 − 𝑞) moment of a chi-squared random variable with 𝑛 
degrees of freedom 
 

𝐸[(𝐳<𝐳)=3>] = *$&%@,!"(=3>/
@,!"/

.          (S42)  
 
When 𝑝 = 2 and 𝑞 = 1, Eq. S42 simplifies to 𝑛 by applying the identity Γ(𝑧 + 1) = 𝑧Γ(𝑧). 

When 𝑝 = 1 and 𝑞 = &
*
,  Eq. S42 equals *

'/"@,!"(
'
"/

@,!"/
. 

 
The second expectation on the right-hand side of Eq. S41 is the (𝑝 − 𝑞) moment of the 
exponential distribution, which is itself a scaled chi-squared 𝑣~	'"	χ*

* with two degrees of freedom 
 

𝐸D𝑣(=3>)E = 𝐸 1@'"	χ*
*C
(=3>)2 = Γ(1 + 𝑝 − 𝑞).       (S43)  

 
When 𝑝 = 2 and 𝑞 = 1, Eq. S43 evaluates to 1.    
When 𝑝 = 1 and 𝑞 = &

*
, Eq. S43 evaluates to √A

*
.    

 
Substituting Eqs. S42 and S43 into equation S41 gives 
 

𝐸𝐱[(𝐱<𝐱)=3>] = 𝐸[(𝐳<𝐳)=3>]𝐸D𝑣(=3>)E .      (S44)  
 
Substituting Eq. S44 into Eq. S39 gives 

 
𝐸𝐱 6

,𝐱#𝐀7𝐱/$

(𝐱#𝐱)%
7 = 𝐸𝐮 1@𝐮<𝐀B𝐮C

=
2 𝐸[(𝐳<𝐳)=3>]𝐸D𝑣(=3>)E.     (S45) 

 
Evaluating Eq. S45 for p = 2 and q = 1, and for p = 1 and q = 0.5, by substituting in Eqs. 
S40ab, S42, and S43 gives 
 

𝐸𝐱 6
,𝐱#𝐀7𝐱/"

(𝐱#𝐱)'
7 = &

(?(*)
.2𝑇𝑟@𝐀B𝐀BC+ 𝑇𝑟@𝐀BC2/,                         (S46a) 

𝐸𝐱 6
,𝐱#𝐀7𝐱/'

(𝐱#𝐱)'/"
7 = √A

?√*
𝑇𝑟D𝐀BE @,

!
"(

'
"/

@,!"/
.                 (S46b) 

 

 
1 Note that there are several non-equivalent definitions of a multivariate Laplace probability density 
function (PDF). Eq. S29 defines a multivariate Laplace with Laplace-distributed radial components, 
whereas elliptical random variables that are constructed as an exponential scale mixture of a multivariate 
normal (see Eq. S41) yields a multivariate Laplace with Laplace-distributed marginals, and a less 
convenient analytic form for differentiation. Equations S47-S51 are therefore approximations. 
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Rewriting the expression for Fisher information by substituting Eq. S37 into Eq. S35 
 

𝐽%(𝛿) ≅
&
*
𝐸𝐱 N

,𝐱𝑇𝐀7𝐱/
2

,𝐱𝑇𝐱/1
O − &

√*
𝐸𝐱 P

,𝐱𝑇𝐀7𝐱/
1

,𝐱𝑇𝐱/
1
2
Q 𝑇𝑟(𝐂3&𝐂4) + &

5
𝑇𝑟(𝐂3&𝐂4)*.   (S47)  

 
Substituting Eqs. S46ab into Eq. S47 gives 
 

𝐽4(𝛿) ≅
5
6

5
(GH6)

.2𝑇𝑟0𝐀2𝐀23 + 𝑇𝑟0𝐀23
6
4 − √J

6G

K81/H
-
/;

K81/;
𝑇𝑟5𝐀26𝑇𝑟(𝐂>5𝐂?) + 5

@
𝑇𝑟(𝐂>5𝐂?)6.  (S48)  

Re-expressing using the facts that 𝑇𝑟@𝐀BC = 𝑇𝑟 .𝐂
'
"𝐂3&𝐂4𝐂3&𝐂

'
"/ = 𝑇𝑟(𝐂4𝐂3&) and  

that 𝑇𝑟@𝐀B𝐀BC = 𝑇𝑟 .𝐂
'
"𝐂3&𝐂4𝐂3&𝐂

'
"𝐂

'
"𝐂3&𝐂4𝐂3&𝐂

'
"/ = 𝑇𝑟(𝐂3&𝐂4𝐂3&𝐂4).  

 
𝐽4(𝛿) ≅

5
6

5
(GH6)

(2𝑇𝑟(𝐂>5𝐂?𝐂>5𝐂?) + 𝑇𝑟(𝐂>5𝐂?)6) − √J
6G

K81/H
-
/;

K81/;
𝑇𝑟(𝐂>5𝐂?)6 + 5

@
𝑇𝑟(𝐂>5𝐂?)6. (S49)  

 
Grouping like terms 
 

 𝐽%(𝛿) ≅
&

(?(*)
𝑇𝑟(𝐂3&𝐂4𝐂3&𝐂4) + S &

*(?(*)
− √A

*?
@,!"(

'
"/

@,!"/
+ &

5T 𝑇𝑟(𝐂
3&𝐂4)*.   (S50)  

 
The second term tends to be small relative to the first term (especially for small 𝑛). 
Dropping the second term and rearranging the coefficient on the first term yields the 
approximation used in the main text 
  

𝐽%(𝛿) ≅
&

'&(!")
&
*
𝑇𝑟(𝐂3&𝐂4𝐂3&𝐂4).       (S51)  
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The relationship between discrimination threshold and Fisher information 
Here, we show that the relationship between Fisher information and the discrimination 
threshold is invariant to whether the estimator is unbiased or biased. The discrimination 
threshold is the critical stimulus separation 

𝑇(𝛿) = ∆𝛿<=!>,       (S53) 

that corresponds to a criterion proportion correct in an n-interval (or n-look) 2AFC 
discrimination task. This criterion proportion correct is given by 

PC<=!> = ΦB9#$%&
'/√8

C,                  (S54) 

where Φ(	. ) is the standard cumulative normal, 𝑑<=!> is the criterion sensitivity (or d-
prime), and n is the number of intervals. For a criterion sensitivity of 1.0 in a two-interval 
task, for example, the criterion proportion correct is 0.76.  

Sensitivity, or d-prime, for discriminating two different values of a latent variable is  

𝑑(𝛿(, 𝛿') =
op(&!)3op(&1)

q1![0p
!(&1)[0p!(&!)]

,                                                       (S55) 

which is given by the distance between the mean estimates of the latent variable 
normalized by the square-root of the average variances of the estimates. The mean 
estimate 𝜇̂(𝛿) = 𝛿 + 𝑏(𝛿) for an arbitrary value of the latent variable is given by its true 
value plus the bias.  

For small differences ∆𝛿 in the value of the latent variable, d-prime can be written as 

𝑑(𝛿(, 𝛿( + ∆𝛿) =
∆&[P(&1[∆&)3P(&1)

q1![0p
!(&1)[0p!(&1[∆&)]

,                                         (S56) 

by substituting in expression for the mean estimate.  

Assuming i) that 𝜎�'(𝛿() ≅ 𝜎�'(𝛿( + ∆𝛿), and ii) that the derivative of the bias is well 
approximated by 𝑏.(𝛿() ≅

P(&1[∆&)3P(&1)
∆&

, d-prime is approximately equal to 

𝑑(𝛿(, 𝛿( + ∆𝛿) ≅
u∆&[∆&×P"(&1)w

0p(&1)
=

∆&u([P"(&1)w

0p(&1)
.                            (S57) 

(These assumptions are not unreasonable for sufficiently small differences in the latent 
variable; recall that the definition of the derivative is 𝑏.(𝛿() = lim

∆&→?

P(&1[∆&)3P(&1)
∆&

.) 

Substituting in the critical stimulus separation and criterion d-prime into Eq. S57 and 
multiplying through yields the following expression for the discrimination threshold  

𝑇(𝛿) = ∆𝛿<=!> = 𝑑<=!>
0p(&)

Z([P"(&)\
              (S58) 
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The Cramer-Rao bound on the variance of a biased estimator is given by  

𝜎�'(𝛿) ≥
u([P"(&)w

!

;(&)
.                                                                  (S59) 

Dividing through Eq. S59 and taking the square-root yields 
0p(&)

Z([P"(&)\
≥ (

:;(&)
.                                                                      (S60) 

Substituting into Eq. S59 yields the expression asserted in the main text 

𝑇(𝛿) ≥ 9#$%&
:;(&)

.                                                                          (S61) 
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Normalization via common binocular factor vs. individual monocular factors 
Binocular receptive field responses could be normalized in at least two different stages 
of the binocular integration process. First, normalization could be carried out 
monocularly before binocular integration. In this scenario, the normalization factor is 
computed from the corresponding monocular contrast images. Second, the left- and 
right-eye contributions could be normalized jointly by a common factor, computed from 
the binocular contrast image. These two different approaches to normalization yield 
more different normalization factors when the left- and right-eye images are 
substantially different. Such differences occur more often with large fixation disparities 
and large disparity contrasts. But whether these potential differences in the 
normalization factors affect the response statistics relevant for disparity discrimination is 
unclear. 

In the main text, normalization was carried out monocularly, before binocular integration 
(i.e. the first scenario). As a control, we redid the main analyses by normalizing the left- 
and right-eye response components by a common factor (i.e. the second scenario). The 
response statistics of binocular receptive fields remain largely unchanged (see Fig. A1).  

Specifically, in the control analysis, the broadband-normalized responses are given by  

                                          𝑅yFz = 𝑟max a
fL
*cL[fR

*cR
CL(M

b,                                    (S62) 

where the normalization factor is common to, or shared by, the two eyes. The common 
binocular broadband normalization factor is given by 

𝑁P=9 = Z∑c/'(𝐱!) + ∑c$'(𝐱!) 

   												= Z∑A/
'(𝐮!) + ∑A$

'(𝐮!)      (S63) 

where c/(𝐱) =
{+(𝐱)3{+

{+
 and c$(𝐱) =

{,(𝐱)3{,
{,

. 𝐼/(𝐱) and 𝐼$(𝐱) are intensity images for the 

left and right eye, respectively. 𝐼/ and 𝐼$ are the average intensities for the left and right 
eye image, respectively. 

Analogously, narrowband-normalized responses that are computed with a common 
binocular normalization factor are given by 

                           𝑅|F} = 𝑟max a
fL
*cL[fR

*cR
CN(O

b,                                                  (S64) 

where common, binocular normalization factor is given by 

                              
𝑁|F} = 𝑁yFz × 𝑆

= 𝐴c+
" 𝐴f+ + 𝐴c,

" 𝐴f,
,                                          (S65) 

in which 𝑆 is the cosine similarity between the binocular receptive field and the binocular 
image input (i.e., left and right eye images). 
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Figure S1: Histogram of kurtosis of normalized responses of all model binocular receptive 
fields with broadband (gray bars) and narrowband (white bars) normalization. 
 

 
Figure S2: (a) The distribution of disparity contrasts computed from all stereo-image 
patches in the data set of size of 72 × 72 pixels (~4/3ºx4/3º), sampled from 91 natural 
stereo-images. (b) Normalized probability of disparity contrast follows approximately a 
power law in the log domain.  
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