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The lens system in the human eye is able to best focus
light from only one distance at a time. Therefore, many
objects in the natural environment are not imaged
sharply on the retina. Furthermore, light from objects in
the environment is subject to the particular aberrations
of the observer’s lens system (e.g., astigmatism and
chromatic aberration). We refer to blur created by the
observer’s optics as ‘‘natural’’ or ‘‘defocus’’ blur as
opposed to ‘‘on-screen’’ blur created by software on a
display screen. Although blur discrimination has been
studied extensively, human ability to discriminate
defocus blur in images of natural scenes has not been
systematically investigated. Here, we measured
discrimination of defocus blur for a collection of natural
image patches, sampled from well-focused photographs.
We constructed a rig capable of presenting stimuli at
three physical distances simultaneously. In Experiment 1,
subjects viewed monocularly two simultaneously
presented natural image patches through a 4-mm
artificial pupil at 618 eccentricity. The task was to
identify the sharper patch. Discrimination thresholds
varied substantially between stimuli but were correlated
between subjects. The lowest thresholds were at or
below the lowest thresholds ever reported. In a second
experiment, we paralyzed accommodation and retested
a subset of conditions from Experiment 1. A third
experiment showed that removing contrast as a cue to
defocus blur had only a modest effect on thresholds.
Finally, we describe a simple masking model and
evaluate how well it can explain our experimental results
and the results from previous blur discrimination
experiments.

Introduction

A major goal of vision science is to characterize and
understand visual performance in natural tasks under
natural conditions. Although this goal is difficult
because of the experimental and theoretical complex-
ities of working with natural stimuli, it is critical for
basic science and practical applications. Here we
consider the task of detecting and discriminating blur in
natural images that are blurred by the optics of the eye
(defocus, astigmatism, higher order aberrations). We
refer to this kind of blur as ‘‘defocus’’ blur or ‘‘natural’’
blur as opposed to ‘‘on-screen’’ blur, which is created in
software.

The natural environment contains objects at many
distances, but the human eye can best focus light from
only one distance at a time. Thus, at any one time,
much of the retinal image will be somewhat blurred.
Defocus blur provides useful information for many
biological and perceptual tasks, including regulation of
eye growth (Held, Cooper, & Banks, 2012; Nguyen,
Howard, & Allison, 2005; Schaeffel & Diether, 1999;
Vishwanath & Blaser, 2010; Wallman & Winawer,
2004; Watt, Akeley, Ernst, & Banks, 2005; Wildsoet &
Wong, 1999), the control of accommodation (Kotulak
& Schor, 1987; Kruger, Mathews, Katz, Aggarwala, &
Nowbotsing, 1997), and the discrimination and esti-
mation of depth and scale (Artal et al., 2004; Held et
al., 2012; Mather & Smith, 2002; Watt et al., 2005).
These tasks are ubiquitous (e.g., humans refocus their
eyes approximately 150,000 times a day), and they all
require detecting and discriminating defocus blur.
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Nonetheless, little is known about the human ability to
detect and discriminate defocus blur in natural images.

The properties of a given retinal image depend on
multiple factors: the particular optical properties of the
observer’s eye (aberrations), the focus distance of the
observer’s eye, the distance of the object from the
observer, and the properties of the imaged object(s)
(e.g., color, texture, etc.). It is difficult to systematically
control all these factors in a laboratory setting. Thus, it
is unsurprising that systematic investigations of defocus
blur discrimination in natural images have yet to be
undertaken.

In natural viewing, points in the retinal image are
focused differentially, depending on whether the
corresponding objects are nearer or farther than the
distance at which the eye is focused. On a conventional
computer display, however, all the light is presented at
the same physical distance from the subject: the
distance of the monitor. If the eye is focused at the
monitor distance, all points in the image will be focused
sharply. If the eye is focused at some other distance, all
image points will be defocused with the same amount
of blur. Thus, with a conventional computer display, it
is very difficult to present stimuli that will cause the
same pattern of retinal blur as the eye’s own optics
within natural scenes.

As a consequence, most previous work on blur
discrimination concerns discrimination of very simple
kinds of on-screen blur, typically created with a
Gaussian blur kernel (Wang & Ciuffreda, 2005;
Watson & Ahumada, 2011). These and other studies
have obtained fairly consistent results (for review, see
Watson & Ahumada, 2011). However, there are a
number of limitations in these previous studies. For
example, blur produced by the optics of the eye under
natural viewing conditions is quite different from
Gaussian on-screen blur. Additionally, human observ-
ers are highly sensitive to the exact pattern of blur
created by the optics of their own eyes (Artal et al.,
2004). Hence, human performance with Gaussian on-
screen blur might not accurately reflect human perfor-
mance under natural viewing conditions.

Other studies have measured blur discrimination
thresholds with blur created by the optics of the eye.
But these studies have used only simple, artificial
stimuli, such as random dot stimuli, sine-wave gratings,
or Maltese cross stimuli (Held et al., 2012; Nguyen et
al., 2005; Wang & Ciuffreda, 2005). Simple, artificial
images typically do not contain the rich statistical
structure of natural images. Visual systems are likely to
be tuned to the statistical properties of natural images
formed in each individual observer’s eye (Artal et al.,
2004; Burge & Geisler, 2011). Therefore, it is possible
that blur discrimination is more precise with natural
defocus blur than on-screen blur and more efficient
with natural images than it is with artificial images.

In the present study, we measured human defocus
blur discrimination of natural images (and some
artificial images). Thresholds were measured in a
custom psychophysical apparatus that could present
light from three different distances simultaneously.
Human subjects focused at one distance, and natural
images were presented at other distances. The natural
images were sharp on screen, thus ensuring that all
retinal blur was created by the optics of the subject’s
eye. The natural images selected for the study were
highly heterogeneous so that we could address several
fundamental questions. Does human defocus blur
discrimination performance vary across different image
patches? To what extent is human performance
dictated by the properties of each natural image patch?
Can variations (or lack of variation) in performance be
explained by contrast detection and discrimination
mechanisms? We found that defocus blur discrimina-
tion performance varies greatly across different image
patches. Sensitivity to defocus blur increased as the
standard defocus pedestal increases for both subjects
above 0.125 D. In a second experiment, we paralyzed
accommodation, thus removing small fluctuations in
the resting accommodative state. We found that this
manipulation increased sensitivity at standard defocus
levels near zero. In a third experiment, we modified the
stimuli so that their contrast energy in the retinal image
did not change with defocus blur level. We found that
there was little effect on performance for most stimuli.
This result implies that defocus blur discrimination
cannot be simply explained by discrimination of the
total contrast energy. Finally, we describe a model to
account for our data and compare our results to
previous blur discrimination experiments (see Model
section).

Methods

Stimuli

Natural image patches were selected from a database
of natural images that were sharply focused. Images in
this database were photographed with a Nikon D700
camera fitted with a Sigma 50-mm prime lens that was
focused at optical infinity. All images in the database
were in sharp focus because the camera with which the
photographs were taken was always at least 16 m from
the nearest object in the frame (Burge & Geisler, 2011).
From the natural image database, we selected 21
patches that reflected the variety of images found in the
natural environment. Patches were selected based on
their color, the skew of their pixel histograms, and their
image content. To enable the comparison of our data to
the existing literature on blur discrimination, we also
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included three artificial image patches that have been
widely used in previous experiments: the Maltese cross,
1/f noise, and random dots on a uniform background
(Figure 1). The hard edges of the image patch borders
could potentially serve as an unnatural cue. A cosine
window (1.08 at half height) was used to smoothly
attenuate each patch.

Psychophysical apparatus

Stimuli were presented on a custom multiplane
display rig. Multiplane displays enable the simulta-
neous presentation of stimuli at multiple physical
distances from the subject. When light is presented at a
distance other than the focus distance, the eye’s optics
will defocus it as in natural viewing. We constructed a
multiplane display capable of presenting light from
three different distances simultaneously. The display
consisted of three computer monitors. The light from
all three monitors was combined with beam splitters so
that simultaneously presented stimuli would appear to

come from the same visual direction side by side. Thus,
points in the retinal image will be focused differentially
by the eye’s optics, depending on the differences
between the eye’s focus distance and the physical
distances at which the stimuli are presented.

The multiplane display rig consisted of three
identical Dell 2007fp LCD monitors, precisely posi-
tioned on an optical bench. Two of the monitors
presented stimuli, and a third presented an accommo-
dative target (see Experimental procedure for details).
The monitors were controlled from a single computer
using an ATI FirePro V5800 graphics card. The focus
monitor (FM) was positioned at 80 cm from the eye.
Stimulus monitor 1 (SM1) and stimulus monitor 2
(SM2) were positioned at variable distances from the
eye (SM1: 80–200 cm, SM2: 80–250 cm; Figure 2). To
enable easy repositioning of the monitors, each monitor
had wheels that rode on rails that were affixed to the
optical bench. Two beam splitters were oriented at 458

angles and positioned at 18 and 54.6 cm from the eye.
The light from SM1 was reflected by beam splitter 1.
The light from SM2 was reflected by beam splitter 2

Figure 1. The natural and artificial image patches that were used in the experiment. Image patches spanned the naturally occurring

range of hues and skews in the pixel histogram. To ease comparison to existing data sets, a Maltese cross image, a random-dot image,

and a 1/f noise image were also included in the image sets. Stimuli were smoothly attenuated with a cosine window (1.08 at half

height) when displayed in the experiments.
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and transmitted through beam splitter 1. The light from
the FM was transmitted through beam splitter 2 and
beam splitter 1 (Figure 2). All distances were measured
from the nodal point of the eye. At all times, the FM
displayed a mean luminance field (17.4 cd/m2) with an
88 · 88 black box centered on the optic axis. This black
box defined the borders of the viewing volume, within
which the accommodation target and the image patches
were presented.

Note that our multiplane display is not a true
volumetric display. Volumetric displays can present
simulated stimuli at any distance within a viewing
volume (Akeley, Watt, Girshick, & Banks, 2004; Love
et al., 2009; MacKenzie, Hoffman, & Watt, 2010;
Ravikumar, Akeley, & Banks, 2011) whereas our
display can present stimuli only at three discrete
distances in any one trial. Most (Akeley et al., 2004;
Hoffman, Girshick, & Akeley, 2008; Love et al., 2009;
Ravikumar et al., 2011) but not all (Heron, Charman,
& Schor, 2001; Kasthurirangan, Vilupuru, & Glasser,
2003; MacKenzie et al., 2010) volumetric displays (and

spinning displays) have display planes at fixed distances
relative to the view position. Presenting stimuli at
distances intermediate to the fixed planes requires
software interpolation (Akeley et al., 2004; Ravikumar
et al., 2011) that can introduce artifacts into the retinal
stimuli. For most viewing situations, these artifacts are
negligible (Hoffman et al., 2008; Ravikumar et al.,
2011; Wang & Ciuffreda, 2005; Watson & Ahumada,
2011). However, positioning display planes at the exact
physical distances to be simulated guarantees that the
retinal stimuli are artifact-free. It is for this reason that
we constructed our displays as we did.

Calibration: Human subjects

The complexity of the psychophysical apparatus
necessitates a series of calibration procedures to
eliminate spurious cues that could confound our
results. Monitors were corrected for luminance and

Figure 2. Three-monitor psychophysical apparatus, stimulus conditions, and task. (a) Subjects on a bite bar viewed stimuli

monocularly through a 4-mm artificial pupil. Light from all three monitors could be displayed simultaneously along the same line of

sight. The FM was fixed at 80 cm (1.25 diopters). The stimulus monitors could be positioned at variable distances ranging from 80 cm

to 200 cm (1.25 diopters to 0.5 diopters). Stimuli could thus be defocused at levels ranging from 0.00 to 0.75 diopters. (b) The viewing

situation simulated by the apparatus. When the monitors were positioned at three different distances, stimuli presented on each

monitor are defocused by different amounts. (c) The effect of defocus on the retinal image for the viewing conditions shown in (b).

Light from the stimulus on monitor 1 will be myopically defocused. Light from monitor 2 will be myopically defocused more severely.

(d) The psychophysical task. Subjects focused a low-contrast high-frequency sine-wave grating, embedded in a crosshairs target.

Immediately after indicating the orientation of the sine-wave grating, two identical natural images (scaled so that their visual angles

matched), were presented to the left and right of the focus position. Subjects judged which stimulus (left or right) was sharper.
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geometric cues using both operator and subject
calibrations.

First, the monitors were corrected for luminance.
Light loss occurs when beam splitters reflect or transmit
light. The light from SM2 and FM passed through two
beam splitters (Figure 2) whereas the light from SM1
passed through only one beam splitter. Thus, more
light is lost from SM2 and FM than SM1. Luminance
differences between the stimuli presented on the
different monitors are therefore a potential confound-
ing cue. In the experiment, stimuli were designed to
have identical luminance. To remove these luminance
differences between the monitors, subjects performed
the following task before each block of data was
collected. Subjects were shown a standard color patch
(28 · 28) at 17.4 cd/m2 on the FM and a comparison
color patch (28 · 28) on a SM. Subjects matched the
apparent luminance of the SM patch to the apparent
luminance of the color patch on the FM by method of
adjustment. This procedure was repeated for each color
channel on each SM. Furthermore, we measured and
linearized the gamma function for each monitor
separately, thereby ensuring that pixel value mapped to
luminance equivalently for all monitors.

Next, a calibration procedure was performed to
match the size and position of the stimuli. Stimuli were
designed to subtend the same visual angle regardless of
monitor position. The two SMs moved on rails and
could be positioned at multiple different distances.
Thus, slight mispositioning of each monitor could
introduce differences in the projected size of each
stimulus. To eliminate this potential confounding cue,
subjects performed a geometric calibration procedure
before each block of trials to ensure that the stimuli
subtended the same visual angle and were presented at
their desired locations. First, a 28 crosshairs target was
presented on the FM. Subjects matched the size and
position of a similar target on each SM using a method
of adjustment. Based on this calibration, stimuli in our
experiment were sized so that they subtended the same
visual angle through our system independent of the
monitor distance. In order to swamp any residual
luminance or geometrical calibration errors, the cali-
bration settings (position, size, and luminance) were
jittered a small amount (62%) in each trial of the
experiment.

Stimuli were designed to have identical resolution.
Here, we distinguish between monitor pixels and image
pixels. Monitor pixels are the physical pixels in the
monitor; image pixels are the pixels that define the
digital image. Because the SMs had identical monitor
pixel pitch, the angle subtended by each monitor pixel
changed as a function of monitor distance. Thus, the
effective resolution of the monitor pixels in pixels/8 was
not necessarily equal. For example, if a SM is
positioned at 200 cm, a 28 image patch subtends 250

monitor pixels corresponding to a Nyquist frequency of
62.5 cpd. If a SM is positioned at 80 cm, a 28 stimulus
subtends 100 monitor pixels corresponding to a
Nyquist frequency of 25 cpd. At some stage of the
image preprocessing pipeline, the image pixels must be
adjusted for one-to-one presentation on the monitor
pixels. A simple way to present the images would be to
first start with an image patch defined by 250 image
pixels (for presentation on the farthest monitor) and
then to down-sample it as needed for presentation on
the nearer monitor. The problem with this procedure is
that image patches presented on a far monitor would
have higher angular resolution than image patches
presented on a near monitor. To eliminate this
potential confounding cue, we performed the following
procedure in software. First, a Gaussian pyramid
expansion increased the number of image pixels in each
stimulus to 800 · 800 pixels. This is more than twice
the largest number of monitor pixels on which a
stimulus would ever be presented (250 · 250 pixels).
Next, the images were blurred and down-sampled to
twice their final presentation size. Finally, a Gaussian
pyramid reduction decreased the number of images
pixels in each stimulus so that the number of image
pixels equaled the number of monitor pixels on which it
would be presented. The stimuli were converted from
16-bit to 8-bit for presentation on the gamma-corrected
monitors. (Note that although a Badal lens system is
another potential solution, it would also require
considerable calibration to ensure that no spurious cues
would be introduced over the relevant areas of the
displays.)

After collecting all the experimental data, an analysis
was performed on the data of each human subject to
ensure there was no SM-specific bias. Specifically, if the
difference in defocus between the two stimuli was
identical and no SM bias existed, then subjects should
have chosen the sharper stimulus the same percentage
of the time regardless of whether it was displayed on
SM1 or SM2. If our numerous calibration procedures
were unsuccessful in eliminating spurious monitor-
specific cues, then subjects might have been biased to
select the stimulus displayed on SM1 over that
displayed on SM2 or vice versa. This was checked by
comparing the subject’s responses on all pairs of
conditions that were identical except for the monitor on
which each stimulus was presented. For example, we
compared the percentage of times subjects chose the
sharper stimulus when patch #1 was presented on SM1
with 0.25 D and on SM2 with 0.50 D to the percentage
of times subjects chose the sharper stimulus when patch
#1 was presented on SM1 with 0.50 D and on SM2 with
0.25 D. We defined bias as the difference between these
two percentages. The bias deviates from 0.00 if a
monitor bias exists. Figure 3 shows a histogram of this
measure for each subject. One can see that, in both
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cases, the measure is approximately normally distrib-
uted around 0.00, which indicates that there was no SM
bias in our experiment.

Experimental procedure

Two experienced psychophysical subjects partici-
pated in this study. Subjects were examined by an
ophthalmologist prior to the administration of eye
drops in the study. Experimental protocols were
approved by the humans subjects committee at UT
Austin and were consistent with the Declaration of
Helsinki. Subjects’ heads were stabilized with a bite
bar. The subject’s right eye was positioned along the
principle optical axis of the apparatus. Subjects viewed
stimuli monocularly. A 4-mm artificial pupil was
positioned less than 1 mm from the eye. A 4-mm pupil
is a normal pupil size when viewing objects outdoors on
a cloudy day (Wyszecki & Stiles, 1982). The retinal
illumination produced by our stimuli was 218.6
Trolands (17.4 cd/m2 with a 4-mm pupil). Accommo-
dation was not paralyzed.

The task was to indicate which of two natural image
patches was in better focus (i.e., less defocused). The
defocus of a given target stimulus is defined as the
difference between the current power of the subject’s
lens and the power required to bring the target into
focus:

DD ¼ Dfocus �Dtarget ð1Þ
where DD is the defocus, Dfocus is the current power of
the lens, and Dtarget is the power required to image the
target sharply, expressed in units of diopters (1/m). If,
for example, the eye is focused at 80 cm (1.25 D) and a

stimulus is presented at 100 cm (1.00 D), the stimulus
will be defocused by 0.25 diopters. Different defocus
levels were presented by moving the SMs to different
distances from the FM. Stimuli were always rendered
sharply on the SMs.

In our experiment, image blur was created by the
optics of the subject’s eye as it is in natural viewing
conditions. The subject’s eye defocused the retinal
images of the stimuli because light from each SM came
from a distance that was different from the distance
that the subject’s eye was focused. For the retinal image
to be defocused accurately, it is critical that subjects
accommodate at the correct distance (80 cm) before
each trial begins. To aid and assess accommodative
accuracy, subjects were asked to accommodate on a
focus target. The focus target was presented straight
ahead on the FM. The target consisted of high-contrast
crosshairs and a high-frequency sine-wave grating (40%
contrast, 20 cpd, 18) attenuated by a cosine window
(0.58 at half height). The crosshairs provided a good
accommodative stimulus, and the high-frequency grat-
ing provided a psychophysical means of assessing
accurate accommodation (i.e., an acuity test). The sine
wave was oriented at either 458 or 1358. To initiate each
experimental trial, subjects indicated in a two-alterna-
tive forced choice procedure whether the grating was
oriented at 458 or 1358. After this orientation judgment
was made, the accommodation target disappeared, and
the trial began. The frequency and contrast of the sine-
wave grating were set such that small accommodation
errors (60.25 diopters) reduced orientation discrimi-
nation to near chance. There was no time limit, but
most judgments were made in less than 1 s. Subjects
were required to achieve and maintain a high accuracy
(e.g., 95%) on the grating orientation task. Post hoc
data analysis showed that both subjects maintained this
level of accuracy.

In each trial, two identical image patches were
rendered sharply and simultaneously on SM1 and SM2
for 200 ms. The accommodative latency in the human
visual system ranges from 200 to 500 ms (Heron et al.,
2001; Kasthurirangan et al., 2003). Thus, this short
presentation time strongly reduced the possibility of
unwanted stimulus blurring due to changing accom-
modation. SM2 was positioned at the standard
distance. SM1 was positioned at a comparison distance.
The distance of the monitor maps directly to defocus
(Equation 1). From this point forward, we will refer to
the standard or comparison defocus of the stimulus
rather than the distance of the monitor. Each stimulus
was attenuated by a cosine window (1.08 at half height)
and was positioned 61.08 left or right of straight
ahead. The left/right position of the sharper (i.e., less
defocused) stimulus was randomized on each trial
(Figure 2). The task was to judge the position (left or
right) of the sharper stimulus.

Figure 3. Histogram of monitor bias measure for both subjects

(n ¼ 385). Monitor bias is defined as the difference between

SM1 chosen and SM2 chosen (in percentage) for each stimulus

when the positions of SM1 and SM2 were reversed. A monitor

bias of 0.0 indicates no bias for SM. The monitor bias measure

for both subjects is normally distributed around 0. For Subject

1: mean bias¼�0.03, median bias¼�0.02. For Subject 2: mean

bias ¼�0.002, median bias ¼ 0.00.
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In the present study, three experiments were
performed to test different aspects of defocus blur
discrimination. Experiment 1 was designed to measure
human sensitivity to defocus blur for 21 natural image
patches. Seven standard defocus levels that ranged
from 0.00 to 0.75 D in equal steps were used in our
experiment (Figure 4). For most standard levels, five
comparison levels were used (standard level 6 0.25 D).
For standard levels at or near the limits of the defocus
range (e.g., DD¼ 0.75 D), fewer comparison levels were
used. Trials were blocked by standard and comparison
levels. Each block consisted of 10 trials per stimulus,
and each block was repeated five times. In all, each
subject completed ;42,000 trials (24 images · 10 trials
· 5 blocks · 5 comparisons · 7 standards). To reduce
the potential effects of learning and adaptation, the
blocks were run in pseudorandom order.

Experiment 2 was designed to test whether or not
accommodative fluctuations account for the elevated
thresholds for discriminating defocus blur for stimuli
presented near the focus distance. Cycloplegia was
induced in the right eye with a single drop of
cyclopentolate (1% tropicamide ophthalmic solution),
thus resulting in the loss of accommodation. Trial
lenses were used to adjust the effective power of the eye
such that subjects reported that the crosshairs/high-
frequency sine-wave target was in best subjective focus.
The power of the preferred trial lens was þ0.75 D for
both subjects. Cyclopleged subjects reran all conditions
from Experiment 1 having standard defocus levels of
0.00 D and 0.75 D. Thus, Experiment 2 was identical to
Experiment 1 in all respects except that accommoda-
tion was paralyzed.

Experiment 3 was designed to test whether a
difference in total visible contrast energy is necessary
for accurate defocus blur discrimination. The experi-
mental details were the same as Experiment 1 except
that (a) the contrasts of the standard and comparison
stimulus patches were adjusted so the contrasts of the

retinal images were approximately equal and (b) that
thresholds were only measured at standard defocus
levels of 0.375 D. This standard defocus level was
chosen because thresholds stabilized at DD ¼ 0.375 D
(Figure 5a) and because it was in the middle of the
measured range. In addition, the data at that defocus
level could not be affected by small focus biases (Figure
A1). Accommodation was not paralyzed.

Results

Experiment 1: Defocus discrimination

In our experiment, an accommodative target was
viewed throughout, and subjects were on average at
least 95% correct in discriminating the orientation of a
high-frequency sine-wave target just prior to presenta-
tion of the defocus discrimination stimuli. Nonetheless,
this procedure may not eliminate mean focus errors
(focus bias) less than 60.25 D. To account for this
possibility, we fit a slightly modified version of a
cumulative normal to the psychometric data via
maximum likelihood assuming a binomial noise model

PðDD̃S , DD̃C; l̃;rtot;DbiasÞ

¼
Z DD̃C

�‘

1ffiffiffiffiffiffi
2p
p

rtot

exp � 1

2

jxj � jl̃j
rtot

� �2
" #

dx ð2Þ

where l̃ is the mean of the psychometric function, rtot
is the slope parameter of the psychometric function
corresponding to internal noise and accommodative
fluctuations (see below), Dbias is the focus bias, and
DD̃C is the corrected defocus of each comparison
stimulus. The corrected defocus values are obtained by
adding the focus bias (see Appendix) to the comparison
and standard defocus values: DD̃C ¼ DDC þ Dbias and

Figure 4. Example natural image patch at all seven standard defocus levels and raw psychometric data from Subject 1. In general,

threshold levels increased with increased standard defocus.
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l̃ ¼ l þ Dbias, respectively. If the focus bias and all

other biases equaled zero, l̃ would equal DDS. The

absolute value sign is used because the subjects were

instructed to judge which of the two stimuli was

sharper (i.e., had the lower magnitude of defocus blur).

The estimated focus bias for Subject 1 was 0.00 D; the

estimated focus bias for Subject 2 was �0.12 D (see

Appendix for details). Note that the findings reported

in this paper are robust to whether or not residual

focus biases are accounted for in the fit procedure.

Threshold was defined as the difference between the

75% and 50% points on the psychometric function (i.e.,

d’ ¼ 1.36); 95% confidence intervals on the thresholds

were obtained from 1,000 bootstrapped data sets.

Across image patches, thresholds decrease on
average as a function of standard defocus in both
subjects (Figure 5a). At each defocus level, however,
thresholds varied markedly for different image patches.
For example, the lowest discrimination threshold was
below the lowest defocus blur discrimination threshold
ever reported (0.11 D, 4-mm pupil). For other image
patches, discrimination thresholds were more than five
times larger.

To examine the role that image patch content has in
determining discrimination thresholds, we compared
the thresholds of the two subjects on a patch-by-patch
basis. The two most extreme hypotheses are that (a)
threshold variation is due only to noise in the
psychophysical measurements or (b) threshold varia-

Figure 5. Results of Experiment 1. (a) Median thresholds (75%) in diopters across all 24 stimuli for both subjects. Error bars represent

the first and third quartile of the data. Threshold variability decreased with higher standard defocus levels, and defocus discrimination

sensitivity increased. This effect is more pronounced in Subject 2 (blue diamonds) but is still present in Subject 1 (red circles). Both

subjects were shown the same standard defocus levels. Data points are offset in this figure to improve legibility. (b) Correlation

between discrimination thresholds. Plotted is the weighted average threshold for each stimulus over the last three standard defocus

levels (0.500, 0.625, and 0.75 D) for each subject. A log–log axis was chosen because confidence intervals on thresholds are roughly

equal in log–log space. Thresholds were moderately correlated between subjects (0.55, p ¼ 0.005). The Spearman rank correlation

between thresholds was 0.55 ( p� 0.01). (c) Mean thresholds in diopters as a function of patch for each subject. Patches are ordered

here, and in Figure 1, by average threshold between subjects from high to low. The Maltese cross, a standard accommodative

stimulus, is among stimuli for which thresholds were highest (i.e., blur was hardest to discriminate). The random dot stimulus

produced the lowest thresholds. No obvious relationship exists between image content and discrimination performance.
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tion is due only to properties of the images. If threshold
variation were due only to noise, then threshold
variation between the two subjects would be perfectly
uncorrelated. On the other hand, if threshold variation
were due only to variations in image patch content,
thresholds would be perfectly correlated between the
two subjects. To make this comparison, we defined a
measure of overall performance for each patch. As can
be seen in Figure 5a, threshold values stabilized, and
confidence intervals on the thresholds decreased as the
standard level increased. Thus, we summarized the
performance on each patch, for each subject, as the
weighted average of the thresholds of the last three
standards (i.e., 0.5, 0.625, and 0.75 diopters) with
weights equal to the normalized inverse variance
(reliability). (Note that the results reported below are
robust to different methods for summarizing perfor-
mance.) These average thresholds are plotted in Figure
5b and c. Both plots show that the thresholds for the
two subjects are correlated across patches.

It is useful to compare the natural image patches for
which defocus discrimination was easy and those for
which defocus discrimination was hard (Figure 5c).
There was significant threshold variation among the
natural stimuli. For example, an image of tree branches
against the sky (#23 in Figure 1) was the second easiest
stimulus to discriminate after the random dot image
(0.12 diopters), yet discrimination performance for
other images of branches against the sky (#01 and #10
in Figure 1) was significantly poorer.

Of the artificial stimuli, the random-dot stimulus had
the lowest defocus discrimination threshold. On the
other hand, the Maltese cross was among the one third
of stimuli for which thresholds were highest. Given that
the Maltese cross is one of the most commonly used
stimuli in studies of defocus blur discrimination and of
the accommodative response (Bharadwaj & Schor,
2006a, 2006b), researchers may have been underesti-
mating defocus sensitivity under natural conditions.
Indeed, defocus blur may be somewhat more useful in
natural conditions than has previously been appreci-
ated.

Experiment 2

Experiment 2 was designed to test whether or not
accommodative fluctuations account for the elevated
thresholds for discriminating defocus blur for stimuli
presented near the focus distance. Previous experiments
on blur detection have reported that sensitivity to
changes in defocus blur increases as the blur of the
standard increases (Wang & Ciuffreda, 2005; Watson &
Ahumada, 2011). The results of Experiment 1 have a
similar pattern of sensitivity changes, consistent with
the literature. The effect is not strong in Subject 1, but

it is more pronounced in Subject 2 (Figure 5a). It has
been suggested that the increase in sensitivity with blur
can be solely explained by relative changes in the
optical transfer function (Wang & Ciuffreda, 2005).
Fluctuation about the mean level of accommodation is
another factor that may contribute to decreased
sensitivity at low levels of blur.

In humans, under natural conditions, the refractive
power of the lens fluctuates about the mean focus
distance with an amplitude of 0.1–0.3 D and a temporal
frequency of approximately 1.5 Hz (Campbell, Robson,
& Westheimer, 1959; Charman & Heron, 1988).
Accommodation was not paralyzed in Experiment 1, so
it is possible that thresholds were affected by accom-
modative fluctuations. If fluctuations randomly change
which stimulus is sharper (standard or comparison)
from trial to trial, then the slope of the psychometric
function may decrease, and estimated thresholds may
increase.

Two factors determine how fluctuations affect
thresholds: the amplitude of the fluctuation and the
focus distance relative to the objects being imaged.
That is,

ðDFM þDbiasÞ �Dfluc ¼ Dcrit ð3Þ
where DFM is the dioptric distance of the FM, Dbias is
the subject’s focus bias in diopters, Dfluc is the
amplitude of the accommodative fluctuation, and Dcrit

is nearest SM distance (in diopters) for which
performance will be unaffected by accommodative
fluctuations. (Note that the term in the parentheses is
the subject’s focus distance in diopters.)

Given a typical accommodative fluctuation ampli-
tude (0.2 D; Campbell et al., 1959; Charman & Heron,
1988), and the subjects’ focus bias (þ0.00 D and�0.12
D), the critical distance for Subject 1 is 1.25 D (0.80 m),
and the critical distance for Subject 2 is 0.93 D (1.08 m).
When the standard was at 0.75 D, there were no
conditions for which stimuli were presented nearer than
either subject’s critical distance. Thus, for both
subjects, we predict that paralyzing accommodation
will have no effect on thresholds at 0.75 D. On the
other hand, when the standard was at 0.00 D, Subject 2
had three comparison levels nearer than his critical
distance (DC¼ [1.25, 1.125, 1.0 D] corresponding to DD
¼ [0.00, 0.125, 0.25 D]), and Subject 1 barely had one
(DC ¼ 1.25 D corresponding to DD ¼ 0.00 D) (Figure
6). Thus, we predict that paralyzing accommodation
will dramatically decrease thresholds for Subject 2
whereas we predict that thresholds for Subject 1 will be
unaffected.

The results from Experiment 2 are shown in Figure
7. Results were as predicted. For Subject 2, thresholds
at 0.00 D were significantly lower, and thresholds at
0.75 D were unaffected. For Subject 1, paralyzing
accommodation had no effect at either 0.00 or 0.75 D.
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The analysis above shows that the different effects are
expected when focus bias is accounted for. The results
suggest that accommodative fluctuation combined with
focus bias is in large part responsible for the elevation
in threshold near zero defocus.

Accommodative fluctuation is a source of behavioral
variability that is independent of all other external and
internal sources of variability. In Experiment 2, the
effect of accommodative fluctuation was removed. We
performed a Monte Carlo simulation to determine the
degree to which discrimination thresholds in Experiment
1 could be predicted by the thresholds in Experiment 2
plus the effect of accommodative fluctuations. In each
trial of the simulation, a random focus error due to
accommodative fluctuation g was sampled from a sine
wave with an amplitude of Dfluc. This focus error due to
accommodative fluctuation was then added to the
subject’s mean focus distance to compute the true

defocus of both standard and comparison. Specifically,
for a particular simulated trial for a given standard and
comparison defocus condition

D eDS ¼ DDs þDbias þ g ð4Þ

D eDC ¼ DDC þDbias þ g ð5Þ

The proportion standard monitor was chosen as
sharper on the simulated trial is given by

PðDD̃S , DD̃CÞ

¼
Z DeDC

�‘

1ffiffiffiffiffiffi
2p
p

rint

exp � 1

2

jxj � jDD̃Sj
rint

� �2

j
" #

dx ð6Þ

where rint is the standard deviation of the cumulative
normal corresponding to the median threshold across
all conditions when accommodation was frozen (Figure
7, open data points). In other words, rint represents all
sources of experimental noise except for accommoda-
tive fluctuations. For a given condition, 1,000 trials
were simulated to obtain simulated psychometric data,
which were then fit with a cumulative normal. As with
the human psychophysical data, thresholds were
defined as the difference between the 75% and 50%
points on the psychometric function. Based on previous
reports in the literature, the amplitude of the accom-
modative fluctuation Dfluc was fixed at 0.2 D (Charman
& Heron, 1988).

Figure 6. Effect of accommodative fluctuations on defocus

discrimination thresholds. (a) Simulated psychometric func-

tions. The shaded lines are 1,000 simulated psychometric

functions at a standard of 0.00 D using the focus bias

corresponding to each subject (0.00 D for Subject 1 and�0.12 D
for Subject 2). The solid lines are the aggregate psychometric

functions. The psychometric functions of Subject 2 showed

more variability because of the negative focus error. (b)

Simulated psychometric functions for 0.0 D and 0.2 D

accommodative fluctuations. Each function represents 1,000

simulations. The threshold for Subject 2 increased more than for

Subject 1 because Subject 2 had a focus error.

Figure 7. Results of Experiment 2. Median threshold versus

standard defocus level for Experiment 1 (filled markers) and

Experiment 2 (empty markers). As predicted, Subject 1 (red

circles) showed little change in threshold at a standard defocus

of 0.00 D and no change at 0.75 D. The median threshold for

Subject 2 (blue diamonds) decreased at 0.00 D but not at 0.75

D. The dotted line in Figure 10 shows the simulated threshold as

a function of standard defocus with an accommodative

fluctuation amplitude of 0.2 D. The shaded area in Figure 10

shows stimulated thresholds with amplitudes ranging from 0.1

to 0.3 D, which is the normal range within which different

human subjects vary (Charman & Heron, 1988).
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The dotted line in Figure 7 shows how thresholds are
predicted to change when natural accommodative
fluctuations of 0.2 D are present. The shaded area
shows the effect of fluctuations of 0.1–0.3 D. Note that
this prediction is parameter-free and is not a fit to the
data. The data from both subjects in Experiment 1 is
reasonably well accounted for by adding the effect of
accommodative fluctuations to the data collected in
Experiment 2. Thus, the accommodative fluctuations
that are present in natural viewing will, on average,
elevate defocus blur discrimination thresholds when the
viewer is focused near a target.

Experiment 3

Under normal conditions, increased blur reduces
contrast at all spatial frequencies. Thus, blur reduces
total contrast energy. However, these contrast reduc-
tions vary systematically with the spatial frequency;
that is, defocus blur causes systematic changes in
spectral shape. Humans can, in general, detect changes
in contrast alone and can detect changes in spectral
shape alone. However, in defocus discrimination
experiments, it is not clear which cue dominates.
Experiment 3 was designed to test whether a difference
in total visible contrast energy is necessary for accurate
defocus blur discrimination.

We performed a series of steps to equalize the retinal
contrast of the stimuli in each trial. First, we defined a
difference signal for the standard and comparison
stimuli to be the difference between the intensity profile
of the windowed image patch minus the windowed
mean luminance of the patch:

dsðxÞ ¼
�
IðxÞ � I
� �

WðxÞ
�

*psfsðxÞ ð7aÞ

dcðxÞ ¼
�
IðxÞ � I
� �

WðxÞ
�

*psfcðxÞ ð7bÞ

where I(x) is the input image, Ī is the local mean of the
input image, W(x) is the cosine windowing function,
and psfs(x) and psfC(x) are the optical point spread
functions (PSFs) associated with the standard and
comparison defocus levels, respectively. The local mean

of the input image is given by I ¼ 1
N

X
x�W. 0

IðxÞ, where N

is the number of pixels in the input image. The PSFs
were determined assuming a wave optics model that
included the effects of diffraction (4-mm pupil),
chromatic aberrations, and the defocus of the stimulus.
The effect of human chromatic aberrations (Thibos,
Ye, Zhang, & Bradley, 1992) on the PSF was modeled
as the sum of single wavelength PSFs, weighted by the
human photopic sensitivity function (Burge & Geisler,
2011).

Second, we computed the average energy of both
difference signals

Es ¼

XN
i¼1

dsðxÞ2

N
ð8aÞ

Ec ¼

XN
i¼1

dcðxÞ2

N
ð8bÞ

Third, we defined a contrast scaling constant, k, as
the square root of the maximum energy over the
minimum energy, which ensures that k � 1 in all cases:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðEs;EcÞ
minðEs;EcÞ

s
ð9Þ

Figure 8. Experiment 3 results. (a) Mean threshold at standard defocus of 0.375 D collapsed across stimuli for Experiments 1 and 3

with bootstrapped 95% confidence intervals. Thresholds increased slightly for both subjects but were not significantly different. (b)

Subject 2 JND from Experiment 3 versus Subject 1 JND from Experiment 3. Thresholds are correlated between subjects when contract

energy is equalized (0.67, p¼ 0.0002). (c) The difference in the thresholds for each stimulus between Experiments 1 and 2 for Subject

2 versus the difference in thresholds for Experiments 1 and 3 for Subject 1. The difference is correlated between subjects (0.57, p¼
0.004). The bars in the upper right corner represent the average 95% confidence intervals for all points.
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Finally, we scale the contrast of the lower contrast
stimulus by k

IscaledðxÞ ¼ k
�
IðxÞ � I
� �

WðxÞ
�
þ IWðxÞ ð10Þ

This procedure ensures that retinal images associated
with both stimuli have the same retinal contrast.

Defocus blur discrimination thresholds measured
with contrast-equalized stimuli are shown in Figure 8a.
Average thresholds are slightly higher than in Exper-
iment 1, but both subjects clearly retained the ability to
discriminate defocus. Thus, differences in retinal image
contrast are not necessary for discriminating defocus
blur.

Model for defocus blur discrimination

It is clear from Figure 5b and c that there are
substantial differences in defocus discrimination
thresholds across natural stimuli and across artificial
stimuli. To what extent can these differences be
explained by standard models of spatial frequency
masking? To address this question, we evaluated a
simple model in which the detectability (d’) of a
particular stimulus is taken to be the pooled difference
between standard (baseline) and comparison responses,
divided by the total baseline response within some
spatial frequency band. Figure 9 shows a schematic of
the model.

At a given defocus level, DD, the response in the
Fourier domain is the product of three factors: the
stimulus, the optics, and a band-pass filter:

Bðu;DDÞ ¼ ZðuÞotfðu;DDÞGðu; lG; rhigh; rlowÞ
ð11Þ

where u¼ (u,v) is the vertical and horizontal frequency,
Z(u) ¼ F{I(x)w(x)}is the Fourier transform of the
windowed image, otf(u;DD) is the optical transfer
function, and G is a band-pass filter. The optical
transfer function was determined assuming the effects
of diffraction (4-mm pupil), chromatic aberrations, and
defocus but not the other monochromatic aberrations
(e.g., Burge & Geisler, 2011, 2012). We define G as a log
Gabor filter with different standard deviations above
and below (rhigh and rlow) the peak frequency (lG):

Gðu; lG; rhigh; rlowÞ

¼
exp �0:5

�
lnðjjujj � lGÞ2

�
=r2

high

h i
lG � jjujj, ‘

exp �0:5
�

lnðjjujj � lGÞ2
�
=r2

low

h i
� ‘ � jjujj, lG

8<:
ð12Þ

where jjujj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. We allow the standard devia-
tions above and below the peak to differ in order to
provide a somewhat wider range of filter shapes. The
signal in the space domain is obtained by taking the

inverse Fourier transform:

bðx;DDÞ ¼ F�1 Bðu;DDÞf g ð13Þ
Thus, the baseline response is b(x;DDs), and the

difference signal, which carries the defocus informa-
tion, is s(x;DDc,DDs)¼ b(x;DDc)� b(x;DDs).

To generate predictions, we regard the baseline
response as an equivalent noise power (or a normaliz-
ing contrast power). Thus, the detectability is given by

d 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x jsðx;DDc;DDsÞjq

q

q
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Po þ

P
x b2ðx;DDsÞ

q ð14Þ

where P0 is an additive noise constant, k is a scale
parameter, and q is a pooling exponent. Note that if q¼
2, then Equation 14 is the formula for optimal pooling
of uncorrelated signals (d’ summation); however, we
allow q to vary to allow for the possibility of
suboptimal pooling. In the present experiment,
threshold was defined as the defocus difference
corresponding to 75% correct (d’ ¼ 1.36). Thus, the

Figure 9. Schematic of our model for blur discrimination in

natural images.
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predicted threshold, JND¼DDC� DDS, is obtained by
setting the left side of Equation 14 to 1.36 (i.e., the d’
corresponding to threshold) and solving for DDC.

We estimated the model parameters by minimizing
the mean squared error between the predicted and
measured thresholds for both subjects simultaneously.
The estimated parameters are P0¼ 9.34e8, q¼ 3.81, lG

¼ 9.13, rhigh¼ 1.71, rlow ¼ 2.15, k¼ 0.035.
Figure 10a shows the correspondence between the

model predictions and measured thresholds for each
stimulus. Subject thresholds are calculated as described
above. Model thresholds were computed in the same
way, using the same weights that were applied when
averaging the subject thresholds to generate a measure
of overall threshold (see Experiment 1). The rms error
between the model and Subject 1 is 0.053 D and
between the model and Subject 2 is 0.075 D. This
discrepancy between model and human thresholds is
small, especially given that an optometric prescription
is considered acceptable for dioptric errors less than
0.25 D. The correlations between predicted and
measured thresholds are 0.52 for both subjects. Recall
that the correlation between subject thresholds is 0.55.
Thus, the model predicts the experimental thresholds of
the two subjects as well as thresholds from one subject
can predict the other.

The log Gabor filter that best accounts for the data is
shown in Figure 10b. It is centered on 9.1 cpd with a
bandwidth of 13.53 cpd. Watson and Ahumada (2011)
reviewed data from a wide range of blur discrimination
studies. All of these studies used artificial stimuli and
on-screen (generally Gaussian) blur. To get some sense
of how our data and model compare to these previous
studies, we used our model to predict on-screen blur

discrimination thresholds for a windowed edge target
degraded by on-screen blur (see inset of Figure 11). For
a particular on-screen blur, rscrn, the response in
frequency space is the product of four elements: the
windowed edge stimulus, the on-screen Gaussian
blurring kernel, the optics given zero defocus, and the
band-pass filter:

Bðu;rscrnÞ ¼ ZðuÞGaussðu;rscrnÞ
otfðu;DD ¼ 0ÞGðu; lG; rhigh; rlowÞ ð15Þ

where Z(u) is the Fourier transform of the unblurred
stimulus and Gauss is the Fourier transform of the
Gaussian blur kernel with standard deviation rscrn. We
include the optical transfer function with DD¼ 0.0 D
because we assumed that subjects in these experiments
were focused on the screen where the blurred stimuli were

Figure 11. Model prediction of previous blur experiments.

Figure adapted from Watson and Ahumada (2011).

Figure 10. Model results. (a) Subject thresholds for blur discrimination versus predicted thresholds for blur discrimination. The

correlation between predicted thresholds and subject thresholds is 0.52 for both subjects. Recall that the between-subjects

correlation is 0.55. The model predicts threshold variability as well as each observer predicts each other. (b) Log Gabor weighting

function on frequencies. The peak is at 9.1 cpd, and the bandwidth is 13.57.
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presented.We chose a windowed edge stimulus because it
is common in the blur-discrimination literature.

In typical blur discrimination experiments, the
standard stimulus is obtained by setting the standard
deviation of the blur kernel to rs. The comparison
stimulus is similarly obtained by setting the blur kernel
standard deviation to rc. Thus, the predictions of our
model are given by

d 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x jsðx;rc;rsÞjq

q

q
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Po þ

P
x b2ðx;rsÞ

q ð16Þ

The dashed curve in Figure 11 shows the predictions
of the model for the windowed edge target, using the
parameter values estimated from our experiment. The
model predicts a U-shaped function with a minimum at
a Gaussian blur of about 1.0 arcmin. The symbols in
Figure 11 show threshold blur functions for six blur
discrimination experiments (see Watson & Ahumada,
2011, for descriptions of these experiments). Our model
predicts a shallower decrease in low standard blur levels
and a sharper increase at high standard blur levels. The
shallow decrease in threshold is consistent with our
results from Experiment 2. We note that the effective
blur range in our experiment corresponds to roughly
0.0–3.0 arcmin of retinal blur.

Discussion

We measured how human defocus blur discrimina-
tion varies with defocus and with different natural
image patches. We showed that discrimination thresh-
olds strongly depend on the particular properties of the
individual images being used to assess discrimination
performance. In some circumstances, this fact may
border on trivial. Featureless white walls or blank blue
skies, for example, provide no information with which
to assess the sharpness or blurriness of the retinal
image. The retinal image of the wall or sky will be
identical whether or not the eye is focused at the
appropriate distance. Images like these, for which there
is no visible contrast energy, may be considered
degenerate cases. However, the images used in the
present experiments were sampled to reflect the variety
of scenes encountered in natural viewing (see Methods).
For otherwise identical viewing conditions, simply
changing the image patch resulted in marked changes
in performance. That is, across different images having
the same defocus level, defocus discrimination thresh-
olds varied from ;0.125 diopters to ;0.625 diopters,
roughly a fivefold change in threshold. Thus, in
thinking about the discriminability along a given
stimulus dimension, it is important to keep in mind that
the particular properties of the images being used to

assess discrimination may affect thresholds as much or
more than the pedestal value of the relevant dimension
from which a change in value is estimated.

In the second experiment, we found that the rise in
blur threshold for sharply focused images (standards
near 0.0 D) may be due to accommodative fluctuations
and that the variability due to these fluctuations is
additive. In other words, we can predict the effect of
accommodative fluctuations by adding their effect to
thresholds measured with accommodation frozen.
This result would seem to be in conflict with earlier
studies that found a rise in blur threshold at 0.0 D
when accommodation is frozen (Campbell et al., 1959;
Walsh & Charman, 1988). However, these earlier
studies used a task in which blur was modulated
sinusoidally around a standard level and the subject’s
task was to detect the modulation. As Walsh and
Charman (1988) note, the modulation about 0.0 D is
at twice the temporal frequency that occurs for
modulation about defocus levels well away from 0.0
D. (Note that because of chromatic aberration this is
strictly true only for the specific wavelengths that are
in sharp focus.) What they don’t point out is that
maximum and minimum blur will be indistinguishable
at the accommodated wavelength, and hence the
amplitude of the modulation will be reduced by half
(the temporal rms modulation of D is reduced by a
factor 2.16). For monochromatic light, this alone
should produce a factor-of-two increase in threshold
at 0.0 D (which is in the ballpark of what they
observed). For broadband (e.g., white) light, this
effect may be somewhat reduced. Specifically, in the
0.0 D condition, only the long wavelengths will be
modulating in blur about the sharp focus point, and
thus the modulation in the short wavelengths will not
be reduced by the factor of two.

In the third experiment, we found that holding
overall retinal contrast energy approximately fixed has
little effect on blur discrimination thresholds. Finally,
we found that a contrast masking model with a spatial
frequency weighting in the range known to best drive
accommodation can account for our results.

Assessing visual performance with natural
images

Performance in traditional psychophysical tasks is
typically assessed by measuring discrimination
thresholds with stereotyped artificial stimuli. Popular
examples of such artificial stimuli are sine-wave
gratings, Gabor patches, random dot images, and
Maltese cross images. There are many reasons for
following this approach. One of the most important is
that simple, artificial stimuli are often easy to
characterize mathematically and lend themselves well
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to parametric manipulation. The papers that report
psychophysical results with these stimuli often con-
clude with statements indicating that human (or
animal) discrimination thresholds of a given stimulus
dimension are of such-and-such a size. For example,
human defocus blur discrimination is often assessed
with Maltese cross stimuli; thresholds are typically
reported to be approximately 0.25 diopters with a 5-
mm pupil (Wang & Ciuffreda, 2005; Watson &
Ahumada, 2011). Our current understanding of visual
processing mostly derives from experiments conducted
in this manner.

The results of the present study suggest that such
conclusions are potentially misleading. Artificial stimuli
do not contain the statistical structure that most
natural images contain. Visual systems are presumably
tuned to process the images that are formed on the
retinas during natural viewing. Therefore, when artifi-
cial images are used to assess visual performance, the
differences between artificial and natural stimuli may
result in performance measures that are nonrepresen-
tative. For example, sine-wave gratings contain con-
trast energy only at a single frequency, Gabor patches
contain contrast energy only over a narrow band of
frequencies, random dot images have near delta
function autocorrelation functions, and Maltese cross
images have zero contrast energy within each arm of
the cross. Natural images, on the other hand, typically
have contrast energy distributed over a broad band of
spatial frequencies that falls off approximately with the
inverse of the square of spatial frequency, have
autocorrelation functions that fall off with distance,
and typically have at least some contrast energy at
every location in the image.

Conclusions

There are three main findings of the present study.
First, we found that image patch content drives
discrimination thresholds in natural images. Next, we
showed that the dipper effect in defocus discrimination
thresholds might be due to accommodative fluctuations
around fixation. Third, we showed that changes in
overall contrast energy are not required to detect
changes in defocus. Finally, we constructed a masking
model that is sufficient to explain the results of our
defocus discrimination experiment. The present study
measured discrimination thresholds between two iden-
tical images. This paradigm is most applicable to
accommodation, with which the visual system must
compare changes in the defocus of the signal as the lens
changes in power. However, when using defocus blur to
estimate depth, the visual system must compare the
relative defocus between two different images. A useful

direction for future work would be to measure and
model the ability of an observer to detect changes in
defocus between different natural image patches.

Keywords: natural images, defocus blur, accommoda-
tion, depth, contrast
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Appendix

Focus bias estimation and correction

The following procedure was used to estimate and
correct for the focus bias for both subjects. The mean
and standard deviation of a cumulative normal
distribution and the focus bias were fit to each
psychometric data set (all stimuli at all standard levels)
simultaneously (Equation 1). A cumulative normal
distribution, with mean, standard deviation and focus
bias parameters was fit to each psychometric data set
by finding the parameter values that maximized the
likelihood of the data under the model (see Equation
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2). The focus bias was fixed across all conditions. The
focus bias for Subject 1 was 0.00 D; the focus bias for
Subject 2 was �0.12 D.

Using this method to find the focus bias only
improve the likelihood of the fit if the subject was
focused behind the FM (i.e., negative focus bias). For
Subject 2, this was the case. For Subject 1, we found
that any assumed focus point in front of the monitor
(i.e., positive focus bias) had no effect on the likelihood
of the data under the model. For this reason, we set the
focus bias of Subject 1 to 0.00 D.

Figure A1 shows the median improvement in
thresholds across all patches for Subject 2 as a function
of standard defocus level, given the focus bias
correction. Thresholds were unchanged for Subject 1
(see above).

Figure A1. Effect of small focus errors on calculated discrimi-

nation thresholds for Subject 2. At a standard of 0.375 D, the

thresholds were no longer affected by the estimated focus bias.
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